DSpace logo

Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.utmachala.edu.ec/handle/48000/6511
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTusa Jumbo, Eduardo-
dc.date.accessioned2016-07-29T14:30:05Z-
dc.date.available2016-07-29T14:30:05Z-
dc.date.issued2014-
dc.identifierImplementation of a Fast Detector Using a Supervised Machine Learning And Gabor Wavelet Feature Descriptors.es_ES
dc.identifier.citationTusa Jumbo, E. (2014) Implementation of a Fast Detector Using a Supervised Machine Learning And Gabor Wavelet Feature Descriptors. Proceedings of the IEEE.es_ES
dc.identifier.issn14839479-
dc.identifier.otherAC 014-
dc.identifier.urihttp://repositorio.utmachala.edu.ec/handle/48000/6511-
dc.description.abstractThe basic purpose of IEEE 127 is to serve as a guide to show preferred (steady-state) frequency and voltage ratings for primary power systems. A careful study, was accomplished by the Flight Vehicle Systems Integration Subcommittee. The attached tabulation gives recommended standard frequencies and voltages for all types of aerospace electric apparatus for which standards appear practical.es_ES
dc.language.isoenges_ES
dc.publisherUnited Stateses_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/es_ES
dc.subjectPROCEEDINGS OF THE IEEEes_ES
dc.subjectGABOR WAVELETes_ES
dc.subjectPANEL DE SISTEMAS DE ENERGIAes_ES
dc.subjectENERGIA ELECTRICAes_ES
dc.titleImplementation of a Fast Detector Using a Supervised Machine Learning And Gabor Wavelet Feature Descriptors.es_ES
dc.typearticlees_ES
Aparece en las colecciones: SCOPUS



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons