

UNIDAD ACADÉMICA DE INGENIERÍA CIVIL CARRERA DE INGENIERÍA CIVIL

TEMA:

ANÁLISIS DEL EQUIPO MÁS CONVENIENTE PARA REALIZAR UN MOVIMIENTO DE TIERRA DE LA VÍA CHILLA USANDO EL DIAGRAMA DE MASAS

TRABAJO PRÁCTICO DEL EXAMEN COMPLEXIVO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

AUTOR: RUEDA MALDONADO EDISON OMAR

CESIÓN DE DERECHOS DE AUTOR

Yo, RUEDA MALDONADO EDISON OMAR, con C.I. 0705152361, estudiante de la carrera de INGENIERÍA CIVIL de la UNIDAD ACADÉMICA DE INGENIERÍA CIVIL de la UNIVERSIDAD TÉCNICA DE MACHALA, en calidad de Autor del siguiente trabajo de titulación ANÁLISIS DEL EQUIPO MÁS CONVENIENTE PARA REALIZAR UN MOVIMIENTO DE TIERRA DE LA VÍA CHILLA USANDO EL DIAGRAMA DE MASAS

- Declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional. En consecuencia, asumo la responsabilidad de la originalidad del mismo y el cuidado al remitirme a las fuentes bibliográficas respectivas para fundamentar el contenido expuesto, asumiendo la responsabilidad frente a cualquier reclamo o demanda por parte de terceros de manera EXCLUSIVA.
- Cedo a la UNIVERSIDAD TÉCNICA DE MACHALA de forma NO EXCLUSIVA con referencia a la obra en formato digital los derechos de:
 - a. Incorporar la mencionada obra al repositorio digital institucional para su democratización a nivel mundial, respetando lo establecido por la Licencia Creative Commons Atribución-NoComercial-Compartirlgual 4.0 Internacional (CC BY-NC-SA 4.0), la Ley de Propiedad Intelectual del Estado Ecuatoriano y el Reglamento Institucional.
 - b. Adecuarla a cualquier formato o tecnología de uso en internet, así como incorporar cualquier sistema de seguridad para documentos electrónicos, correspondiéndome como Autor(a) la responsabilidad de velar por dichas adaptaciones con la finalidad de que no se desnaturalice el contenido o sentido de la misma.

Machala, 25 de noviembre de 2015

RUEDA MALDONADO EDISON OMAR C.I. 0705152361

RESUMEN

ANÁLISIS DEL EQUIPO MÁS CONVENIENTE PARA REALIZAR UN MOVIMIENTO DE TIERRA DE LA VÍA CHILLA USANDO EL DIAGRAMA DE MASAS

AUTOR: Edison Omar Rueda Maldonado

El presente documento explica sobre el análisis del equipo más conveniente para realizar un movimiento de tierras a partir del diagrama de masas mediante un programa especializado AutoCAD Civil 3D. En el caso del movimiento de tierra, las maquinarias se detallan de tal forma que el enfoque de esta función sea solamente aplicado al tipo de material involucrado, designando las restricciones y las características que inciden en la elección de ella, según sean las propiedades del suelo en donde se va a trabajar. Luego, se muestra el modo más recurrente de cálculo de costos unitarios para el movimiento de tierras, descubriendo otros casos y formas de afrontar dichas estimaciones, así como también determinaremos volumen de corte y relleno, acarreos, sobreacarreos y rendimiento de las maquinarias. Además, se unen, dentro de cada caso, otras opciones y condiciones que afectan el precio final, presentando la correcta aplicación de los factores estudiados. (1)

Palabras claves: movimiento de tierras, diagrama de masas, volumen, acarreo, rendimiento.

ABSTRACT

ANALYSIS OF THE MOST SUITABLE EQUIPMENT TO PERFORM A MOVEMENT OF LANDS OF THE CHILLA VIA USING THE DIAGRAM OF MASSES

AUTOR: Edison Omar Rueda Maldonado

This document discusses on the analysis of the most suitable equipment for performing an earth-moving from mass through a specialized program AutoCAD Civil 3D diagram. In the case of the movement of Earth, machines are detailed so that the focus of this function is only apiade to the type of material involved, designating the restrictions and characteristics that affect the choice of it, depending on the properties of the soil where it is going to work. Then, shows the most recurrent mode of calculation of unit costs for earthmoving, discovering other cases and ways to tackle these estimates, so how also determine volume of cut and fill, scree, scree slopes and performance of the machines. In addition, joining, in each case, other options and conditions affecting the final price, presenting the correct application of the factors studied.

Keywords: Earthmoving, diagram of masses, volume, hauling, performance.

INTRODUCCIÓN

Una de las actividades más favorables en la ingeniería civil son los movimientos de tierra necesarios para construir obras de ingeniería, siendo de gran importancia el realizar con adecuada precisión los volúmenes de tierra a mover.

El movimiento de tierras incluye las actividades de cortes, excavaciones, banqueos, rellenos, construcción de terraplenes mediante la ocupación de maquinaria tal como: excavadora, retroexcavadora, tractor, volqueta, entre otras. Estas máquinas se convierten en una herramienta excelente para el análisis del movimiento de tierra dentro de un proyecto ya que la información obtenida resulta valiosa al momento de seleccionar el equipo para determinar su producción y hacer un análisis de los costos de dicha producción.

La ciencia de la ingeniería, ha determinado varios métodos para el cálculo de los volúmenes de tierra, siendo uno de los más aplicados el de Diagrama de Masa, que presenta muchas ventajas, siempre y cuando sea bien interpretado. Teniendo como objetivo general analizar los equipos más convenientes para el movimiento de tierras.

Los volúmenes de corte y relleno dependen de la forma y dimensiones de las secciones transversales y de la distancia entre ellas.

"Antes de la aparición de los programas para el cálculo del movimiento de tierra este se realizaba de forma manual, siendo muy difícil a pesar de la sencillez de los métodos de cálculo".(2)

DESARROLLO

Contextualización del problema

Las vías en nuestro país se han compuesto en un pilar fundamental de desarrollo y comunicación, estableciendo una gran obra de ingeniería que buscan alcanzar la seguridad, fluidez, comodidad y costo mínimo para la comunidad, razón por que el mantenimiento de las mismas sea preciso para cumplir el objetivo para la cual fue diseñada y construida.(3)

La vía Chilla-Guartiguro-Guanazan, tiene características geográficas en la zona que impiden el tránsito vehicular el cual solo se puede hacer en épocas de verano y en el día, al realizar un movimiento de tierras se lo debe hacer con la maquinaria más eficiente y capaz de poder trabajar en este tipo de terreno montañoso y alto el cual generara un costo adicional comparando si se realiza el mismo trabajo sobre un terreno llano y seco.

Objetivos

Objetivo general

Analizar los equipos más convenientes para realizar un movimiento de tierras a partir del diagrama de masas.

Definición del problema

Dentro del Plan Vial Provincial desarrollado por el Gobierno Provincial Autónomo de El Oro, la vía CHILLA- GUARTIGURO- GUANAZAN, está clasificada como Eje Estratégico Principal Provincial, ya que une directamente a los cantones de Chilla y Zaruma, además permite conectarse con el cantón Saraguro en la provincia de Loja, constituyéndose en un corredor vial importante para el desarrollo socio-económico de la parte alta de la provincia de El Oro.

La vía en mención permite la comunicación de los sitios: Guartiguro, Las Cuevas, La Cocha, La Cruz y Zhininc con la parroquia Guanazán y el cantón Chilla. Su economía se basa en actividades agrícola y pecuaria, siendo la producción de leche, carne y queso la que se desarrolla a mayor escala.

Ubicación del estudio

El Proyecto Vial: CHILLA- GUARTIGURO - GUANAZAN, se encuentra ubicado en la zona sur del País, y al sureste de La Provincia de El Oro, en los cantones de Chilla y Zaruma. La vía inicia con el 0+000 en el cantón Chilla, pasando en la abscisa del proyecto 17+400 por el sitio Guartiguro hasta finalizar en la abscisa 24+385.19 en la parroquia Guanazán del cantón Zaruma. Las coordenadas UTM y cotas del inicio y fin del proyecto son:

INICIO	0+000.00	9618.123 N	658,062 E	2,386 msnm
FINAL	24+385.19	9617.613 N	667,748 E	2,637 msnm

Para mi proyecto específicamente las cotas de inicio y fin son **2+000-2+999**, respectivamente.

Metodología del trabajo

Antecedentes históricos

El cantón Chilla pertenecía a inicios de 1729 al cantón Zaruma, en el año de 1984 Chilla es declarado cantón pese a la fuerte oposición de pobladores oriundos de otros cantones de la provincia.

Chilla se localiza a unos 78 Km de Machala, capital provincial de El Oro, limita al norte con las parroquias de Uzhcurrumi y Casacay; al sur con el Cantón Zaruma, parroquia Arcapamba, Huertas, Cordoncillo y Cantón Atahualpa; al este: con las parroquias Abañin y Guanazán del cantón Zaruma y al oeste con Pasaje y la parroquia Buena Vista. Tiene una extensión de 389 km cuadrados. (4)

La vía se desarrolla en terreno montañoso con su calzada a nivel de sub-rasante, no posee estructura de soporte al tráfico, permitiendo el tránsito por ella únicamente en tiempo de verano y cuando no hay lluvias. Su ancho promedio es de 6.00 a 6.50 aproximadamente, existiendo tramos en los cuales su ancho no llega a 5.00 m por la presencia de terreno rocoso que dificultad el ensanchamiento de la vía.

La importancia de contar con un diagrama de masas al momento de construir un proyecto vial, es sumamente indispensable, ya que este nos permitirá organizarnos de manera correcta acerca de la programación que vamos a realizar o los avances de obra que debemos cumplir.

Argumentación de la pregunta realizada

Investigaciones recientes ha planteado un enfoque de optimización para el diseño de carreteras, que son las rutas de larga distancia entre un origen y un destino en proyectos mineros, a través de sistematización. Redes de carreteras temporales entre múltiples orígenes y destinos múltiples, son más complicadas para los proyectos de movimiento de tierras masivo. Una red de carreteras temporales es problema de diseño de sitio que determina las rutas y direcciones para mover la eficiencia de tierra de acarreo. Diseños de red de camino temporal todavía principalmente se basan en experiencia hasta la fecha. Sin embargo investigaciones anteriores intentan de simulación de movimiento de tierras o la optimización de movimiento de tierras deliberadamente consideran temporal a la vía.(5)

Los operadores de máquinas para movimiento de tierra tales como orugas y tractores de ruedas, raspadores, volquetas etc., son afectados por vibraciones emocionadas por los caminos de diferentes irregularidades en el que el equipo es operado. Debido a la pobre suspensión mecánica de estas máquinas, los niveles de vibraciones transmiten a los operadores usualmente excede el límite permitido y la cuestión de cómo reducirlos se ha convertido en interés general. Para evaluar las propiedades de vibración de un vehículo, deberemos gestionar formación sobre la rugosidad de la superficie de la carretera, así como las características de transferencia de vibración mecánica de la máquina. Este último podemos conseguir por métodos experimentales, pero el primero requiere la información medido real.(6)

La construcción con tierra es poco usada en la actualidad debido a la falta de difusión e investigación, ya que es relacionada con la pobreza; por ende, se desaprovechan muchas de sus ventajas, como la abundancia de materia prima, la localización, la disponibilidad, el reciclaje, la producción sin consumo de energía, el bajo costo y la resistencia con un adecuado estudio del material tierra, de la estructuración y del suelo de fundación; otras de sus ventajas son el aislamiento térmico y acústico. Con el paso

del tiempo se han mejorado las técnicas constructivas con tierra, realizando estabilizaciones e implementando el uso de maquinaria y herramienta mecánica para elaborar bloques de tierra comprimida, y así facilitar el trabajo y obtener mayor rendimiento. Este artículo presenta la tierra como material constructivo, las técnicas o sistemas constructivos, los bloques de tierra comprimida (BTC) y algunos ensayos realizados a estos bloques.(7)

Las autopistas, cuyos trazados tienden más y más a multiplicarse, forman, como las vías férreas, lo que se ha convenido en llamar "estructuras lineales superficiales". La elección de un trazado y el perfil longitudinal deben cumplir a normas que recuerdan mucho a las adoptadas en el transcurso del último siglo para la construcción de las líneas de los ferrocarriles, las cuales hacen que uno se admire de que pertenezcan tan bien a las grandes velocidades y al tráfico pesado que se les impone hoy día. Entre las preocupaciones de las oficinas de estudio de trazados, de estimación de los volúmenes y del coste de las explanaciones, constituye factor principal el problema existente de modificar el proyecto para evitar las rocas duras, cuyo precio de extracción resultaría demasiado elevado. (8)

Las operaciones de movimiento de tierras en la construcción de cualquier carretera son un objeto de mayor oferta, con estimación de la precisión es de una importancia considerable en ganar un trabajo y maximizando beneficio. Distribución de material y selección cuidadosa del equipo son esenciales en el proceso. Para la distribución de material, el diagrama de masa de recorrido (Oglesby, 1982; Stark y Mayer, 1983; Anderson y Mikhail, 1985) se utiliza generalmente para las asignaciones de movimiento de tierras económicas.

Aunque este enfoque es una técnica comúnmente aceptada para lograr el cumplimiento de movimiento de tierra, plantea varios problemas y limitaciones (Toomy, 1984), incluyendo:

- las distancias medidas de acarreo se calculan desde el centro de masa del volumen del corte al centro de masa del volumen del relleno, lo que conduce a distanciarse inexactitudes si los cortes y rellenos no son relativamente iguales en tamaño o si hay alguna irregularidad en la curva masa.
- Variables como diferentes tipos de suelo no pueden ser fácilmente manipulados.
- ➤ Acarreando costos cuando no son directamente proporcional a las distancias de recorrido son difíciles de incorporar.(9)

Procedimientos y cálculos

DATOS DEL DISEÑO:

Velocidad de diseño	30 Km/h
Radio mínimo	20 m
Peralte máximo	6 %
Longitud mínima del desarrollo del peralte	16.80 m
Ancho de carril	4.00 m
Número de carriles	1
Ancho de espaldones	1.00 m
Gradiente longitudinal máxima	14 %
Gradiente longitudinal mínima	0.50 %
Pendiente transversal	2.50 %
Longitud mínima curvas verticales	18.00 m
Ancho total de la vía pavimentada	6.00 m

Calculo de volúmenes

Obtenidas las áreas de corte y relleno de los perfiles transversales se procede a determinar el volumen de corte y relleno necesarios entre cada abscisa para que exista una sección transversal que usualmente se lo hace cada 20 metros, y en curvas cada 10 metros. (ANEXO 1)

Diagrama de masa

Un diagrama de masa es el total acumulado de la cantidad de material excedente o deficiente a lo largo del perfil de la carretera.

El diagrama de masa se lleva acabo el estudio de excavación, relleno, su compensación, desperdicios, determinación de las distancias de acarreo y sentido de los movimientos, para ello se utilizó el software AutoCAD civil 3D. (ANEXO 2)

Trazado de la línea compensatoria

En un diagrama de masa podemos trazar muchas líneas compensatorias, pero nos interesa saber cuál es la mejor, esta es aquella que minimiza el costo de transporte más el desperdicio y más préstamo.

Distancia de acarreo libre

Es la distancia con la que el material va hacer transportado para lo cual se lo considera en el análisis de precios unitarios al momento del corte.

Según las normas del MTOP la distancia de acarreo libre es de 500 metro, para nuestro proyecto consideramos un acarreo de 200 metros.

Sobreacarreo

Es el transporte del material a una distancia mayor a la del acarreo por ello se establece un precio adicional. Es decir si el material va hacer transportado más allá de los 200 metros se deberá pagar un precio adicional.

Canteras de compensación (corte y relleno)

Las canteras de compensación son aquellas donde la línea compensatoria del diagrama de masas consta de una longitud de 200m la cual define los acarreos de volúmenes que pasan de corte a relleno. En estos casos el acarreo será considera como acarreo libre y para ello se considerara el tipo de maquinaria para transportar dicho volumen.

Canteras no compensadas

Estas canteras presentan solo volúmenes de corte o solo de relleno, por lo cual no se puede utilizar en un tramo consecutivo de la vía. Todo el material sobrante deberá ser trasladado a una cantera de relleno no compensada.

En caso de sobrar material de corte y no pueda ser utilizado como relleno, se establecerá la ubicación del material fuera de la vía.

Para determinar la línea q pasa por el diagrama de masa se dice que si es ascendente la cantera será de corte, si es descendente será de relleno.

Cuadro general de canteras definidas en el proyecto

Cantera	Tipo	Volumen m3	Distancia de acarreo (m)			
1	Cantera compensada	785	400			
2	Cantera compensada	12	39			
3	Cantera compensada	336	132			
4	Cantera compensada	785	400			
5	Cantera compensada	82	222			
6	Cantera compensada	331	132			
7	Cantera compensada	785	222			
8	Cantera compensada	35	50			
9	Cantera no compensada	55.85	CG más 500m			

Análisis y evaluación de los resultados de la maquinaria más conveniente para el movimiento de tierras

En este proyecto determinamos el movimiento de tierras mediante el diagrama de masas, para lo cual determinamos los siguientes equipos a utilizar en la obra.

- Volqueta 12m3
- Tractor de ruedas

- Motoniveladora
- Rodillo liso
- > Rodillo pata de cabra
- Excavadora de orugas
- Cargadora
- > Tanquero.

Una vez determinado el eje de la vía procedemos a realizar el grupo de maquinaria que se va a utilizar para el movimiento de tierras de corte, relleno y compactación del material.

En la abscisa 2+000.00–2+257.04 tenemos un corte, lo cual para este trabajo utilizaremos un Tractor 814F con un volumen de sobreacarreo de 785 m3 y una distancia de 400 m, este material excavado será trasladado a la abscisa 2+457.04-2+660.00.

En la abscisa 2+164.66-2+200.00 se va a realizar un corte con un volumen de acarreo de 12 m3, para ello lo hacemos con el tractor 814F. El material cortada en la abscisa posteriormente nombrada lo procedemos a transportar a una distancia libre de 39 m a la abscisa 2+200.00-2+220.00 para rellenar y compactar, para este tipo de trabajo utilizamos motoniveladora, tanquero y el rodillo.

En esta cantera al igual que en la cantera anterior realizamos corte y relleno. En la abscisa 2+257.04-2+360.00 se va a realizar un corte con un volumen de acarreo de 336m3 y una distancia de 132m, para ello lo hacemos con el tractor 814F. El material cortada lo procedemos a transportar a la abscisa 2+360.00-2+457.04 para rellenar y compactar con la maquinaria indicada: motoniveladora, tanquero y el rodillo.

El material excavado anteriormente en la abscisa 2+000.00-2+257.04 es transportado a la abscisa 2+457.04-2+660.00 con un volumen de sobreacarreo de 785 m3 para ser rellenado y compactado. Para ello utilizamos tractor, excavadora, volqueta, tanquero, rodillo pata de cabra y rodillo liso.

En la abscisa 2+660.00-2+800.00 tenemos un volumen de sobreacarreo de 82 m3 lo cual va hacer cortado con la ayuda de una excavadora, este material como es compensado con la abscisa 2+800.00-2+907.39 será transportado a una distancia de 222 m para ser rellenado.

En este tramo tenemos corte y relleno con un volumen de acarreo 331 m3 y una distancia libre de 132m. En la abscisa 2+680.85-2+800.00 realizaremos un corte con el tractor 814F, este material será trasladado a la abscisa 2+800.00-2+880.85 para ser rellenado y compactado mediante la maquinaria adecuada como: volqueta, motoniveladora, tanquero y rodillo.

En la abscisa 2+800.00-2+907.39 tenemos un relleno de un volumen de sobreacarreo de 82 m3, este material será rellenado y compactado, utilizaremos volqueta, tractor, motoniveladora y rodillo.

En la abscisa 2+949.00-2+978.67 vamos a cortar un volumen de 35 m3 lo cual este material será acarreado a una distancia libre de 50m para ser rellenado y compactado en la abscisa 2+907.39-2+949.00. En esta cantera de corte y relleno utilizamos el tractor, motoniveladora, tanquero y rodillo.

Finalmente se procede a realizar el corte de material en la abscisa 2+978.76-2+999.99 para ello utilizamos excavadora y volqueta, lo cual este material con un volumen de desalojo de 55.85 m3 no puede ser compensado lo procedemos a desalojar a una distancia de 500 metros fuera de la vía.

Grupos de maquinaria a utilizarse de acuerdo a la distancia de acarreo

Excavación del material y transporte.

Para determinar el movimiento del material se necesita:

- Excavadora
- Tractor
- Volqueta

De acuerdo al análisis resuelto tenemos lo siguiente:

Excavadora: 291,06 m^3/h

Tractor: $71,72m^3/h$

Volqueta: $148,91m^3/h$

Ocuparemos 2 volquetas para transportar el material que es producido por la excavadora en una hora de trabajo.

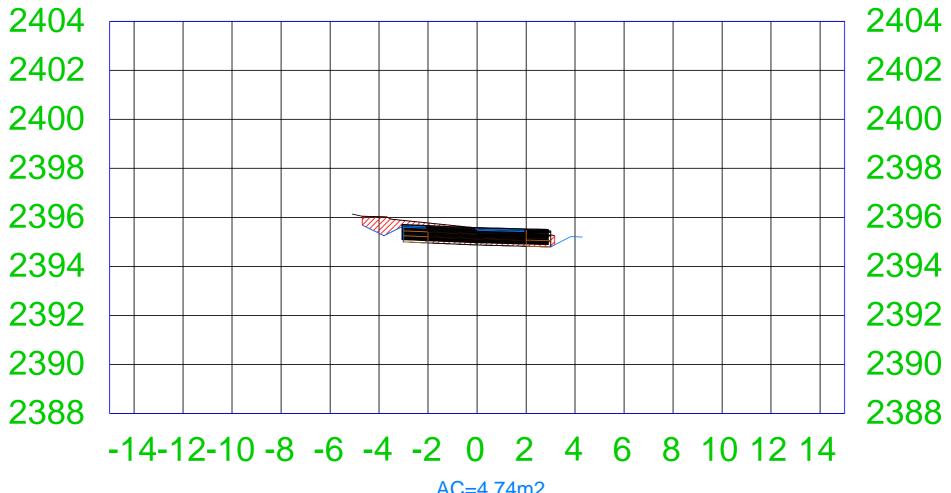
Rendimiento grupal =1/291,06 m^3 /h=0,0034 h/ m^3

El rendimiento grupal seria el rendimiento del ciclo de 20 min la volqueta de 12 m^3

$$RG = \frac{20}{12*60} = 0.03 h/m3$$

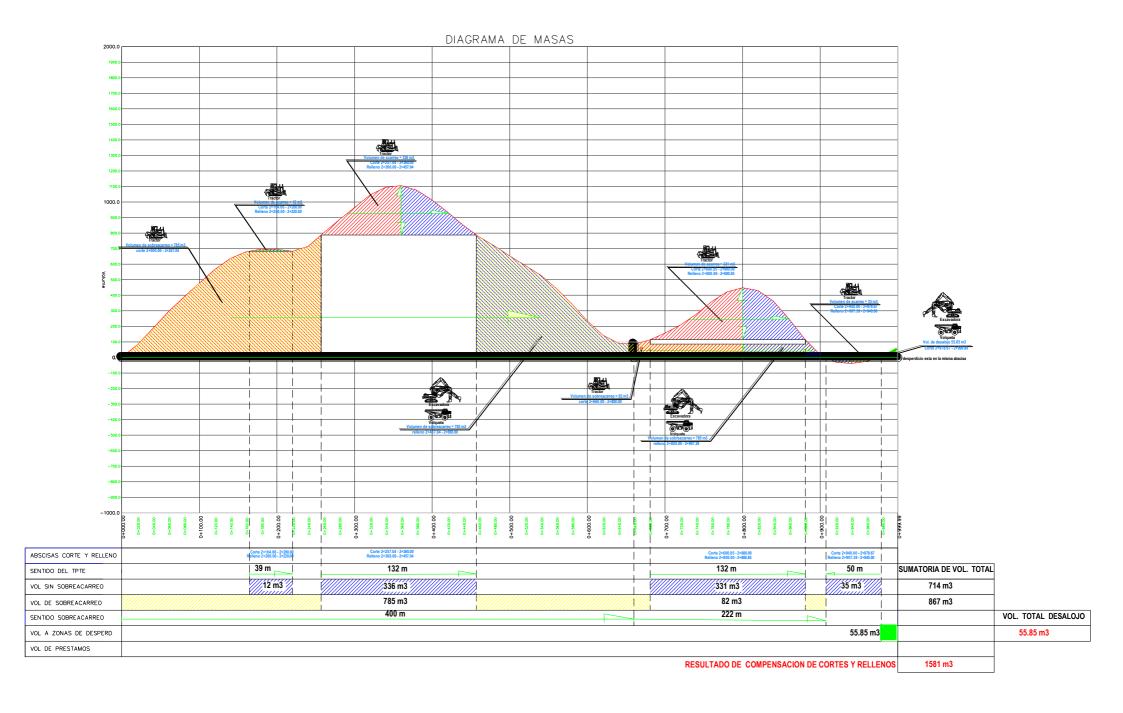
CONCLUSIONES

- Al analizar el diagrama de masas se puede realizar una planificación de equipos que permita una buena ejecución de los procesos constructivos de una carretera en el movimiento de tierra.
- ➤ El movimiento de tierra es una de las partidas iniciales de cualquier obra de construcción, por ende es necesario tomar todas la consideraciones y cuidados posibles con el objetivo de lograr una buena ejecución y posteriormente los resultados deseados.
- Con el uso del diagrama de masas se puede hacer un análisis significativo que permita una buena ejecución de la obra.


REFERENCIAS BIBLIOGRAFICAS

- 1. Civil CDEI. Universidad técnica de ambato. 2013:
- 2. Del O, Maquinarias EDE, El P, Elizabeth G, Lam A. USO DE DIAGRAMA DE MASAS "Presentada por.
- 3. Elizabeth F, López A. Universidad técnica de ambato. 2015;
- 4. CANTÓN CHILLA PROYECTO : "GENERACIÓN DE GEOINFORMACIÓN PARA LA GESTIÓN DEL. 2013;1–47.
- 5. Barton RR. Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds. 2013;(1981):342–53.
- 6. Fujimoto Y. Development work at Midorigaoka residential area. 1983;20(1):43–60.
- 7. Tatiana K, Medina A, Humberto Ó. Bloque de tierrra comprimida como material constructivo Compressed earth blocks, as construction material. 2011;20(31):55–68.
- 8. Superior C, Cient I, Commons LC. con escaí * a « loraVi | i | ier las ! | i. 1972;25.
- 9. Alkass S, Harris F. Development of an integrated system for planning earthwork operations in road construction. Constr Manag Econ [Internet]. 1991;9(3):263–89. Available from: http://www.tandfonline.com/doi/abs/10.1080/01446199100000022

ANEXOS


VOLÚMENES

2+020.00

AC = 4.74m2

AR=0.00m2

RENDIMIENTO DE MAQUINARIAS

RENDIMIENTO DEL EQUIPO

TRACTOR 814F

RENDIMIENTO										
	R=Q*F*E*f*60/T									
	0 (0)	0 (0)								
L	a (m)	h (m)	Qr (m3)	Qn (m3)						
3.6	1.11	0.7	2.80	3						
FACTOR DE CARGA DE	EL RECEPT	ACULO								
F=Qr/Qn	0.932									
EFICIENCIA										
E=Tr/Tt*100										
Tr=Tiempo real	50									
Tt=Tiempo disponible	60									
E=	83%									
Factor de conversión s	uelo									
f=	1.1	tierra suelta								
Tiempo total del ciclo e	n minutos									
T=	2	minutos								
Rendimiento	71.72	m3/h								

RENDIMIENTO DEL EQUIPO

MOTONIVELADORA 120M

INIO I ONI V LLADONA 120M		
A=Ancho sección trabajada	3.67	m
e=espesor capa trabajada	0.2	m
v=velocidad	3.7	Km/h
E= factor eficiencia máquina	0.83	
f=factor conversión	1.1	Tierra suelta
factor de conversión de km a mts	1000	
n= número de pasadas de la máquina	8	
RENDIMIENTO		
_		
$R=((A^*e^*v)/n)^*(E^*f^*1000)$ R=	309.94	m3/h

RENDIMIENTO DEL EQUIPO

EXCAVADORA DE ORUGAS

RENDIMIENTO				
	R=Q*F*E*f	*60/T		
L	a (m)	h (m)	Qr (m3)	Qn (m3)
1.5	0.7	1.2	1.26	1.5
FACTOR DE CARGA DI	EL RECEP	ΓACULO		
F=Qr/Qn	0.84			
EFICIENCIA				
E=Tr/Tt*100				
Tr=Tiempo real	50			
Tt=Tiempo disponible	60			
E=	83%			
Factor de conversion s	suelo			
f=	1.1	tierra suelta		
Tiempo total del ciclo e	en minutos			
T=	0.2	minutos		
Rendimiento	291.06	m3/h		

RENDIMIENTO DEL EQUIPO

RODILLO LISO CS533E

	2.13	m
	0.2	m
	6	Km/h
	0.83	
	1.1	Tierra suelta
mts	1000	
maquina	12	
R=	194.469	m3/h
	maquina	0.2 6 0.83 1.1 mts 1000 maquina 12

RENDIMIENTO DEL EQUIPO

RODILLO PATA DE CABRA CS533E

A=Ancho seccion trabajada	2.13	m
e=espesor capa trabajada	0.2	m
v=velocidad	6	Km/h
E= factor eficiencia maquina	0.83	
f=factor conversion	1.1	Tierra suelta
factor de conversion de km a mts	1000	
n= numero de pasadas de la maquina	12	
RENDIMIENTO		
R=((A*e*v)/n)*(E*f*1000) R=	194.47	m3/h

RENDIMIENTO DEL EQUIPO

CARAGADORA 938H

RENDIMIENTO										
R=Q*F*E*f*60/T										
L a (m) h (m) Qr (m3) Qn (m3										
2.3	a (111) 1	11 (111)	2.30	3						
2.0	•	'	2.00							
FACTOR DE CARGA DE	L RECEPT	ACULO								
F=Qr/Qn	0.77									
EFICIENCIA										
E=Tr/Tt*100										
Tr=Tiempo real	50									
Tt=Tiempo disponible	60									
E=	83%									
Factor de conversion s	uelo									
f=	1.1	arcilla seca								
Tiempo total del ciclo e										
T=	0.2	minutos								
Rendimiento	484.92	m3/h								
renamiento	TUT.JZ	1110/11								

RENDIMIENTO DEL EQUIPO

TANQUERO

RENDIMIENTO										
	R=Q*F*E*f*60/T									
L	a (m)	h (m)	Qr (m3)	Qn (m3)						
4	1.7	1.4	9.52	9.52						
FACTOR DE CARGA DE	EL DECEDT	.VCIII U								
		ACULU								
F=Qr/Qn	1.00									
EFICIENCIA										
E=Tr/Tt*100										
Tr=Tiempo real	50									
Tt=Tiempo disponible	60									
E=	83%									
Factor de conversion s	Factor de conversion suelo									
Tiempo total del ciclo e	Tiempo total del ciclo en minutos									
T= .	27	minutos								
Rendimiento	17.63	m3/h								

RENDIMIENTO DEL EQUIPO

VOLQUETA HINO FS700

RENDIMIENTO				
	R=Q*F*E*f*	60/T		
	0 (0)	o (o)		
L	a (m)	h (m)	Qr (m3)	Qn (m3)
3.8	2	1.5	11.40	12
FACTOR DE CARGA DI	EL RECEPT	ACULO		
F=Qr/Qn	0.95			
EFICIENCIA				
E=Tr/Tt*100				
Tr=Tiempo real	50			
Tt=Tiempo disponible	60			
E=	83%			
Factor de conversion s	suelo			
f=	1.1	tirra suelta		
Tiempo total del ciclo e	n minutos			
T=	4	minutos		
Rendimiento	148.91	m3/h		

RENDIMIENTO DETALLADO

DETERMINACIÓN DE RENDIMIENTO DE EQUIPOS

TRABAJOS A REALIZAR: ANALISIS DEL EQUIPO MAS CONVENIENTE PARA MOVIMIENTO DE TIERRAS DE LA VIA CHILLA

UBICACIÓN: CHILLA

			MAQUINAS							
DESIGNACIÓN	PARÁMETROS	UNIDAD	TRACTOR 814F. 359HP	MOTONIVELADORA. 138 HP.	EXCAVADORA ORUGAS CAT 320D. 140 HP	RODILLO LISO CS533E. 80 HP	RODILLO PATA DE CABRA 125 HP	CARGADORA 938H. 188 HP	VOLQUETA 485 HP	TANQUERO 210 HP
Q	CAPACIDAD DEL RECEPTÁCULO	m3	2.80		1.26			2.30	11.40	9.52
С	CONSUMO	I/m3								
D	DISTANCIA DE OPERACIÓN	m	50	50	50	50	50	50	50	50
е	ESPESOR DE CAPA TRABAJADA	m	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
F	FACTOR DE CARGA		0.932		0.84			0.77	0.95	
f	FACTOR DE CONVERSIÓN DEL SUELO		1.1	1.1	1.1	1.1	1.1	1.1	1.1	
E	FACTOR DE EFICIENCIA		0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
а	ANCHO DE OPERACIÓN	m								
S	ANCHO DE SUPERPOSICIÓN	m								
Α	ANCHO ÚTIL DE OPERACIÓN	m	3.6	3.67	1.5	2.13	2.13	2.3	3.8	4
R	NÚMERO DE PASADAS NECESARIO									
Р	PROFUNDIDAD DE TRABAJO									
tf	TIEMPO FIJO EN CICLOS	min								
ti	TIEMPO DE IDA EN CICLOS	min								
tr	TIEMPO DE RETORNO EN CICLOS	min								
Т	TIEMPO TOTAL DE CICLO	min								
Vi	VELOCIDAD DE IDA	km/h	5.7	3.7		6	6		25	25
Vr	VELOCIDAD DE RETORNO	km/h	6.5	8		6	6		30	30
OBSERVACIONES	:			•	·	FÓRMU	LAS			•
			R=Q*F*E*f*60/T	R=A*e*V*E*f*1000/n	R=Q*F*E*f*60/T	R=A*e*V*E*f*1000/n	R=A*e*V*E*f*1000/n	R=Q*F*E*f*60/T	R=Q*F*E*f*60/T	R=Q*F*E*f*60/T
RENDIMIENTO HO	RARIO		71.72	309.94	291.06	194.47	194.47	484.92	148.91	17.63
NÚMERO DE UNID	ADES		1	1	1	1	1	1	2	1
RENDIMIENTO DEI	_ EQUIPO					71.72*1=7	1.72			
UTILIZACIÓN PROD	DUCTIVA		1	0.23	0.25	0.37	0.37	0.15	0.24	1.00
UTILIZACIÓN IMPR	ODUCTIVA		0	0.77	0.75	0.63	0.63	0.85	0.76	0.00

UNIDAD

PRESUPUESTO

PRESUPUESTO DE OBRA

PROYECTO: ANALISIS DE EQUIPO MAS CONVENIENTE PARA MOVIMIENTO DE TIERRAS DE LA VIA CHILLA

CONTRATANTE:

FECHA: 23 de octubre 2015

ITEM DESC	DESCRIPCION	UNID.	CANTIDAD	PRECIO	соѕто	
	DESCRIPCION	MED.	CONTRAT.	UNITARIO	TOTAL	
1	EXCAVACIÓN SIN CLASIFICAR	m3	1,632.33	6.21	10,136.77	
2	RELLENO CON MATERIAL DEL SITIO	m3	1,576.48	5.62	8,859.82	
3	TRANSPORTE POR SOBREACARREO	m3-km	867.00	2.74	2,375.58	
4	MATERIAL DE DESALOJO	m3	55.85	1.30	72.61	
	TOTA L					

Edison Rueda Maldonado

PROPONENTE

ANALISIS DE PRECIOS UNITARIOS

PROYECTO: ANALISIS DE EQUIPO MAS CONVENIENTE PARA MOVIMIENTO DE TIERRAS DE LA VIA CHILLA

PROPONENTE: Edison Rueda Maldonado

Unidad: m3 Rendimiento: U/H 0.030 ITEM: 1/4

RUBRO: Excavación sin clasificar

A .- EQUIPO.-

DESCRIPCION	CANT.	TARIFA	COSTO HORA	COSTO UNIT.
DESCRIPCION	Α	В	C = A * B	D = C * R
Herramienta menor 5%			5.00%	0.03
Excavadora	1.00	45.00	45.00	1.35
Volqueta 12 m3	2.00	30.00	60.00	1.80
Tractor	1.00	40.00	40.00	1.20

PARCIAL A.-

4.38

B.- MANO DE OBRA.-

DESCRIBEION	CANT.	TARIFA	COSTO HORA	COSTO UNIT.
DESCRIPCION	Α	В	C = A * B	D = C * R
Op. Excavadora C1	1.00	3.57	3.57	0.11
Operador de volqueta C1	2.00	4.67	9.34	0.28
Operador de tractor C1	1.00	3.57	3.57	0.11
Ayudante	1.00	3.18	3.18	0.10
		PARCIAL R -		l 0.50

C MATERIALES				
DESCRIPCION	UNIDAD	CANT.	UNITARIO	COSTO UNIT.
		Α	В	D = A*B
	!	PARCIAL C		-
23 de octubre 2015	Total Costos	Directos (A + B +		4.97
	Total Costos	Indirectos	25.00%	1.24
	Otros Costo	s Indirectos		
Edison Rueda Maldonado	Costo total del rubro		6.21	
OFERENTE	Valor prop	uesto		6.21

PROYECTO: ANALISIS DE EQUIPO MAS CONVENIENTE PARA MOVIMIENTO DE TIERRAS DE LA VIA CHILLA

PROPONENTE: Edison Rueda Maldonado

ITEM: 2/4 Unidad: m3 Rendimiento: U/H 0.021

RUBRO: Relleno con material del sitio

A .- EQUIPO.-

DESCRIPCION	CANT.	TARIFA	COSTO HORA	COSTO UNIT.
	Α	В	C = A * B	D = C * R
Herramienta menor 5%			5.00%	0.03
Rodillo liso	1.00	25.00	25.00	0.53
Rodillo pata de cabra	1.00	30.00	30.00	0.63
Volqueta 12 m3	2.00	30.00	60.00	1.26
Tanquero	1.00	30.00	30.00	0.63
Motoniveladora	1.00	40.00	40.00	0.84
		PARCIAL A		3.91

B.- MANO DE OBRA.-

DESCRIPCION	CANT.	TARIFA	COSTO HORA	COSTO UNIT.
DESCRIPCION	Α	В	C = A * B	D = C * R
Operador de rodillo liso	1.00	3.39	3.39	0.07
Operador de rodillo pata de cabra	1.00	3.39	3.39	0.07
Operador de volqueta C1	2.00	4.67	9.34	0.20
Operador tanquero lic. Profesional	1.00	4.67	4.67	0.10
Operador motoniveladora	1.00	3.57	3.57	0.07
Ayudante	1.00	3.18	3.18	0.07
		ΡΔΡΟΙΔΙ Β -		0.58

C.- MATERIALES.-

C MATERIALES				
DESCRIPCION	UNIDAD	CANT.	UNITARIO	COSTO UNIT.
DESCRIPCION		Α	В	D = A*B
		PARCIAL C		-
				•
23 de octubre 2015	Total Costos	Directos (A + B +		4.49
	Total Costos	Indirectos	25.00%	1.12
	Otros Costo	s Indirectos		
Edison Rueda Maldonado	Costo total del rubro			5.62
OFERENTE	Valor prop	uesto		5.62

PROYECTO: ANALISIS DE EQUIPO MAS CONVENIENTE PARA MOVIMIENTO DE TIERRAS DE LA VIA CHILLA

PROPONENTE: Edison Rueda Maldonado

ITEM: 3/4 Unidad: m3-km Rendimiento: U/H 0.030

RUBRO: Transporte por sobreacarreo

A .- EQUIPO.-

A EQUIPO	CANT.	TARIFA	COSTO HORA	COSTO UNIT.
DESCRIPCION	Α	В	C = A * B	D = C * R
Herramienta menor 5%			5.00%	0.02
Volqueta 12 m3	2.00	30.00	60.00	1.80
		DADCIALA		4.00
B MANO DE OBRA		PARCIAL A		1.82
B MANO DE OBRA	CANT.	TARIFA	COSTO HORA	COSTO UNIT.
DESCRIPCION	A A	В	C = A * B	D = C * R
Operador de volqueta C1	2.00	4.67	9.34	0.28
Ayudante	1.00	3.18	3.18	0.10
·				
		PARCIAL B		0.38
C MATERIALES	11111040	CANT	LINITARIO	COCTO UNIT
DESCRIPCION	UNIDAD	CANT.	UNITARIO	COSTO UNIT. D = A*B
		A	В	D = A.B
		PARCIAL C		-
22 do octubro 2015	Total Cost	Directos (A + D -		2.40
23 de octubre 2015	Total Costos Directos (A + B + Total Costos Indirectos		3E 00%	2.19
		s Indirectos	25.00%	0.55
Edison Rueda Maldonado	Costo total o			2.74
OFERENTE	Valor prop			2.74

PROYECTO: ANALISIS DE EQUIPO MAS CONVENIENTE PARA MOVIMIENTO DE TIERRAS DE LA VIA CHILLA

PROPONENTE: Edison Rueda Maldonado

ITEM: 4/4 **Unidad:** m3 Rendimiento: U/H 0.030

RUBRO: Material de desalojo

A EQUIPO				
DESCRIPCION	CANT. A	TARIFA B	COSTO HORA C = A * B	COSTO UNIT. D = C * R
Volqueta 12 m3	1.00	30.00	30.00	0.90
		DARCIALA		0.00
B MANO DE OBRA		PARCIAL A		0.90
DESCRIPCION	CANT. A	TARIFA B	COSTO HORA C = A * B	COSTO UNIT. D = C * R
Operador de volqueta C1	1.00	4.67	4.67	0.14
		PARCIAL B		0.14
C MATERIALES	UNIDAD	CANT.	UNITARIO	COSTO UNIT.
DESCRIPCION	ONIDAD	A	В	D = A*B
		PARCIAL C		-
		Directos (A + B +	25.254	1.04
	Total Costos	Indirectos s Indirectos	25.00%	0.26
Edison Rueda Maldonado	Costo total o			1.30
OFERENTE	Valor prop			1.30

Urkund Analysis Result

Analysed Document: Trabajo Practico Maquinaria.docx (D16361270)

Submitted: 2015-11-24 14:34:00

Submitted By: edrueda_1989@hotmail.com

Significance: 4 %

Sources included in the report:

ESTRUCTURA DEL TRABAJO PRACTICO.docx (D16346751) http://www.cib.espol.edu.ec/Digipath/D_Tesis_PDF/D-39073.pdf http://www.fire.nist.gov/bfrlpubs/build02/PDF/b02095.pdf

Instances where selected sources appear:

7

Ing.Marco Antonio Tacuri Rivas C.I. 0702217944