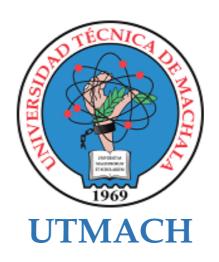

FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado - Santa Rosa abscisa 0+000 hasta 3+187 a partir del análisis topográfico, geotécnico y de tránsito.

TINIZARAY LOPEZ DAVIS ARIEL INGENIERO CIVIL

MACHALA 2025



FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado – Santa Rosa abscisa 0+000 hasta 3+187 a partir del análisis topográfico, geotécnico y de tránsito.

TINIZARAY LOPEZ DAVIS ARIEL INGENIERO CIVIL

FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

PROYECTOS TÉCNICOS

Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado – Santa Rosa abscisa 0+000 hasta 3+187 a partir del análisis topográfico, geotécnico y de tránsito.

TINIZARAY LOPEZ DAVIS ARIEL INGENIERO CIVIL

OYOLA ESTRADA ERWIN JAVIER

MACHALA 2025

Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado – Santa Rosa abscisa 0+000

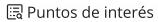
Nombre del documento: Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado – Santa Rosa abscisa 0+000.pdf ID del documento: 7dddb0871673f3ffeae9a57af1f7e29c71b50ada

Tamaño del documento original: 590,94 kB Autor: DAVIS_ARIEL TINIZARAY_LÓPEZ **Depositante:** Oyola Estrada Erwin Javier **Fecha de depósito:** 25/7/2025

Tipo de carga: interface fecha de fin de análisis: 25/7/2025

Número de palabras: 14.747 Número de caracteres: 96.973

Ubicación de las similitudes en el documento:


≡ Fuentes de similitudes

Fuentes principales detectadas

N°		Descripciones	Similitudes	Ubicaciones	Datos adicionales
1	8	scielo.sld.cu Análisis comparativo de ejes equivalentes obtenidos mediante mét http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202018000100059	< 1%		🖒 Palabras idénticas: < 1% (57 palabras)
2	8	dspace.ups.edu.ec https://dspace.ups.edu.ec/bitstream/123456789/29752/1/UPS-CT011934.pdf 1 fuente similar	< 1%		ប៉ា Palabras idénticas: < 1% (31 palabras)
3	8	dspace.ups.edu.ec https://dspace.ups.edu.ec/bitstream/123456789/30279/1/UPS-GT006283.pdf 1 fuente similar	< 1%		ြံ Palabras idénticas: < 1% (24 palabras)

Fuentes con similitudes fortuitas

N°		Descripciones	Similitudes	Ubicaciones	Datos adicionales
1	血	Documento de otro usuario #0d5808 ◆ Viene de de otro grupo	< 1%		🖒 Palabras idénticas: < 1% (25 palabras)
2	8	repositorio.utmachala.edu.ec http://repositorio.utmachala.edu.ec/bitstream/48000/18697/1/ECFIC-2022-IC-DE00024.pdf	< 1%		🖒 Palabras idénticas: < 1% (20 palabras)
3	8	www.obraspublicas.gob.ec https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Man	< 1%		🖒 Palabras idénticas: < 1% (18 palabras)
4	血	Documento de otro usuario #69b42b ◆ Viene de de otro grupo	< 1%		🖒 Palabras idénticas: < 1% (10 palabras)
5	<u> </u>	Documento de otro usuario #2a47ab ◆ Viene de de otro grupo	< 1%		Palabras idénticas: < 1% (11 palabras)

Nombre: Davis Ariel Tinizaray López

Titulo: Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado –

Santa Rosa abscisa 0+000 hasta 3+187 a partir del análisis topográfico, geotécnico y de tránsito.

RESUMEN

Este proyecto surge ante la evidente necesidad de mejorar las condiciones de una vía rural ubicada en el sector Al Quemado, en el cantón Santa Rosa, cuyo estado actual, marcado por deficiencias geométricas, escasa capacidad estructural y deterioro progresivo, limita la movilidad, especialmente del transporte agrícola, y afecta el desarrollo socioeconómico de la zona.

El objetivo principal fue diseñar una alternativa de trazado vial que se adapte a las condiciones reales del terreno y al volumen de tránsito existente, garantizando mayor seguridad, funcionalidad y durabilidad. Para ello, se llevaron a cabo estudios técnicos como el levantamiento topográfico, aforos vehiculares y ensayos de laboratorio del suelo, que permitieron caracterizar con precisión la situación actual y establecer los parámetros de diseño. A partir de esta información, se propuso un rediseño geométrico con una velocidad de diseño adecuada, corrección de pendientes y radios, así como una estructura de pavimento flexible adaptada a la capacidad de soporte del suelo y a la demanda proyectada.

El desarrollo del proyecto se apoyó en criterios normativos (NEVI-12), el método

AASHTO 93 y el uso de herramientas como AutoCAD Civil 3D, permitiendo una

planificación técnica precisa. En conjunto, esta propuesta busca mejorar la conectividad

de la zona, facilitar el transporte de productos agrícolas y contribuir al bienestar de los

habitantes del sector.

Palabras clave: vías rurales, diseño geométrico, pavimento flexible, levantamiento topográfico, movilidad agrícola, NEVI-12, AASHTO 93, Civil 3D.

2

INTRODUCCIÓN

Importancia del tema

Documento de otro usuario

La infraestructura vial constituye un pilar fundamental para el desarrollo de las

comunidades rurales, ya que facilita la movilidad, mejora la accesibilidad a servicios básicos y promueve el crecimiento económico. En Ecuador, una parte significativa del territorio depende de vías de tercer orden, las cuales conectan zonas agrícolas y rurales con los principales centros urbanos. Sin embargo, muchas de estas carreteras presentan condiciones deficientes, lo que limita su funcionalidad y afecta negativamente la productividad y calidad de vida de sus habitantes.

El trazado geométrico de una vía influye directamente en su seguridad, eficiencia y durabilidad. Un diseño inadecuado puede generar problemas como inestabilidad estructural, tiempos de recorrido prolongados y riesgos para los usuarios. Por ello, evaluar y optimizar los trazados geométricos en vías rurales es una tarea prioritaria para garantizar una infraestructura vial eficiente y sostenible.

En el contexto de la provincia de El Oro, y en particular en el cantón Santa Rosa, la mejora del trazado de sus vías rurales resulta esencial para fortalecer la conectividad y dinamizar la actividad económica local. La producción agrícola y ganadera de la región depende en gran medida del transporte de insumos y productos terminados, por lo que contar con vías adecuadas no solo facilita la movilidad de los productores, sino que también reduce costos logísticos y fortalece el comercio regional.

Desde el ámbito de la ingeniería civil, el estudio de los trazados geométricos en carreteras rurales permite aplicar conocimientos técnicos en topografía, tránsito y diseño estructural, asegurando que las soluciones planteadas sean viables tanto desde el punto de vista funcional como económico. Así, el presente trabajo contribuye a la formulación de propuestas de mejora que optimicen la infraestructura vial y promuevan el desarrollo sostenible en la zona de estudio.

3

Actualidad de la problemática

A pesar de su relevancia estratégica, las vías rurales del cantón Santa Rosa presentan condiciones desfavorables que limitan su funcionalidad y seguridad. Estas deficiencias, derivadas de diseños geométricos inadecuados y un mantenimiento insuficiente, generan problemas como superficies de rodadura irregulares, mala conectividad y un aumento en los tiempos de recorrido. En particular, la vía Al Quemado, objeto de estudio de este trabajo, carece de un diseño técnico formal, ya que fue originalmente abierta de manera empírica por los habitantes locales, sin considerar criterios técnicos como capacidad estructural, resistencia del suelo o condiciones topográficas.

Este deterioro afecta directamente la movilidad de los usuarios y el transporte de productos agrícolas, disminuyendo la productividad de los sectores rurales e incrementando los costos operativos. Adicionalmente, el crecimiento poblacional desordenado y la falta de integración con la planificación urbana han generado una demanda vehicular que supera la capacidad actual de las vías, agravando los problemas de tránsito y aumentando el riesgo de accidentes.

Frente a esta realidad, se hace evidente la necesidad de una intervención técnica que contemple un diseño geométrico adecuado para optimizar las condiciones de las vías rurales. Este enfoque permitirá garantizar un servicio vial eficiente, mejorar la conectividad entre zonas urbanas y rurales, y promover un desarrollo socioeconómico en el cantón Santa Rosa.

1.1 Antecedentes

El presente trabajo de titulación se llevará a cabo en la Provincia del Oro, en el Cantón Santa Rosa, específicamente en la parroquia del mismo nombre. Santa Rosa está situada al sur de la región litoral del Ecuador, en una amplia llanura a 10 metros sobre el nivel del mar. Es reconocida como la tercera ciudad más grande y poblada de la provincia de El Oro. La parroquia Santa Rosa abarca una superficie de 141,77 km², lo que representa el 11,40% del territorio cantonal. Geográficamente, se localiza en las coordenadas 78°57'30" de longitud oeste y 3°26'30" de latitud sur. (Gobierno Autónomo descentralizado, 2019)

A partir de los censos realizados por parte del Instituto Nacional de Estadísticas y Censos (INEC) en el año 2001 en donde Santa Rosa presentó una población de 46,200 habitantes y 2010 donde hubo un registro de 52,863 habitantes, se determina una tasa de crecimiento poblacional del 1.51% y se procede a realizar las proyecciones de población haciendo uso del método geométrico, los resultados se muestran en la tabla 1.

A su vez se puede dividir esta población según la zona en la que se encuentra, creándose así dos categorías: la rural y la urbana donde están quienes habitan la cabecera parroquial. En la tabla 2 se detalla la proyección de población en este contexto.

El cantón Santa Rosa cuenta con un territorio rural de suelos altamente productivos para la agricultura, la ganadería y la acuicultura, gracias a la presencia de ecosistemas estratégicos como manglares y humedales. Estas características no solo destacan su potencial productivo y ecológico, sino que también crean un paisaje natural distintivo que define la identidad del territorio (Gobierno Autónomo descentralizado, 2019).

El perímetro urbano en las zonas de la parroquia Santa Rosa se ha visto modificado, principalmente, por una tendencia a reconocer asentamientos irregulares realizados sin considerar límites catastrales actuales, lo que conlleva una expansión de las áreas urbanas hacia la zona rural. El patrón de crecimiento urbano en la ciudad de Santa Rosa, está sectorizado hacia el norte y noreste, incluyendo la nueva parroquia denominada Nuevo Santa Rosa; razón por la cual se requiere de una actualización de la red vial que integre estos nuevos sectores (Gobierno Autónomo descentralizado, 2019).

5

En la Provincia de El Oro la competencia de las vías se divide entre el Gobierno
Autónomo Descentralizado municipal del cantón Santa Rosa (GAD)y el Gobierno
Autónomo Descentralizado Provincial de El Oro (GADPEO), a partir de esto se establece
un límite urbano dentro del cual la competencia de las vías que allí se encuentra le
pertenecerá al GAD Cantonal dejando el resto del sistema vial a cargo del Consejo
provincial. Esta división facilita la destinación de recursos, obras y mantenimiento del
sistema vial (Gobierno Autónomo Descentralizado Provincial de El Oro, 2019).
El Gobierno Autónomo descentralizado (2019) establece que la red vial del cantón está
integrada por: la red vial estatal, la provincial y la cantonal urbana. El estudio se centrará
en la red vial provincial, la misma que comunica cabeceras parroquiales-rurales con
diferentes comunidades o recintos vecinales, esta red cuenta con un total de 292.31 km lo

cual corresponde al 39% de la red vial total del cantón (Gobierno Autónomo descentralizado, 2019).

El Gobierno Autónomo Descentralizado Provincial de El Oro (2019) en su PDYOT divide la red vial provincial en tres categorías: vías de primer orden, este tipo de carretera conecta las cabeceras de la provincia con las ciudades principales; vías de segundo orden, las cuales están caracterizadas por vincular territorios urbanos con rurales, es decir, es la unión entre las vías de primer y tercer orden; y, por último, vías de tercer orden que corresponderían a las zonas rurales y caminos vecinales. En la siguiente tabla se muestra la longitud de la red vial según su clasificación.

En la siguiente tabla se muestra el material del cual está conformada la capa de rodadura de las vías de tercer orden y la distribución correspondiente.

El cantón Santa Rosa experimenta un notable crecimiento demográfico, lo cual resalta la importancia de mejorar su infraestructura vial. A pesar de esto, muchas de sus vías aún se encuentran en condiciones desfavorables, limitando la productividad de los sectores rurales y obstaculizando su desarrollo. En este contexto, el diseño del trazado geométrico de vías rurales se plantea como una solución viable para optimizar las condiciones de movilidad y beneficio para los usuarios. Por ello, el presente trabajo de titulación se enfoca en la evaluación de un caso de estudio sobre este tipo de vía, con el objetivo de

proponer alternativas de diseño, basadas en criterios técnicos y normativas vigentes, que mejoren su funcionalidad.

1.2 Descripción de la situación problemática (Causas y efectos)

6

El cantón Santa Rosa, caracterizado por su creciente población y su importante actividad económica, enfrenta desafíos relacionados con la estructura y funcionalidad de sus vías, las cuales presentan condiciones que dificultan el transporte eficiente de productos y personas. Esta realidad limita el desarrollo económico y social de la región y refleja la necesidad de abordar problemas asociados con la infraestructura vial y su capacidad para satisfacer la demanda actual.

La vía objeto de estudio carece de una estructura y características propias de un diseño técnico formal, ya que, como ocurre frecuentemente en las zonas rurales, estas vías suelen ser abiertas de manera empírica por los habitantes locales. En estas áreas, dedicadas principalmente a actividades agrícolas, la necesidad de acceder a las fincas impulsa la apertura de caminos de manera informal, sin considerar aspectos como el diseño geométrico, la resistencia del suelo o las condiciones topográficas.

Posteriormente, estas vías son reconocidas por entidades municipales o provinciales, y con el tiempo se incorporan a los planes de desarrollo vial. Sin embargo, al no haber sido concebidas bajo criterios técnicos desde su origen, presentan limitaciones significativas en su funcionalidad y durabilidad, lo que afecta la movilidad de los usuarios y el transporte eficiente de productos agrícolas.

La falta de conexión entre la planificación urbana y el diseño de las vías desencadena en

la circulación de tráfico no esperado sobre las mismas, lo cual, sumado a una falta de infraestructura adecuada, genera el desgaste prematuro de la vía y problemas de transitabilidad.

Además, la vía en estudio no cuenta con una capa de rodadura adecuada que garantice condiciones óptimas para el tránsito vehicular. Su superficie actual, en estado de lastrado o camino afirmado, limita su funcionalidad y capacidad para soportar el tráfico agrícola y de pasajeros. Estas condiciones generan problemas como un mayor desgaste de los vehículos, tiempos de traslado prolongados y una menor seguridad vial, especialmente durante las épocas de lluvia, cuando la superficie se torna inestable y difícil de transitar.

7

Otro factor que acentúa el problema es el crecimiento demográfico desordenado. La falta de organización en la expansión del cantón provoca una desconexión entre la planificación urbana y el diseño de las vías, lo cual, dificulta prever y gestionar el impacto de la creciente población sobre el diseño y funcionalidad de las vías. Esto da lugar a un flujo vehicular atraído no previsto que acelerará el desgaste de la estructura vial.

Si no se realizan los diseños técnicos pertinentes para la mejora de la vía, los problemas relacionados con la transportación de productos agrícolas y la movilidad de los habitantes continuarán agravándose. Esto no solo limitará el crecimiento económico del cantón, al obstaculizar el acceso a mercados y reducir la competitividad de los productores locales, sino que también afectará directamente a la calidad de vida de los habitantes del sitio "El Quemado", quienes enfrentarán mayores dificultades para acceder a servicios públicos esenciales como salud, educación y seguridad.

1.3 Formulación del problema (preguntas científicas)

El trazado geométrico de vías rurales ha sido objeto de estudio en diversas investigaciones y planes de ordenamiento territorial, lo que proporciona una base de información relevante para abordar los desafíos actuales. Datos sobre el crecimiento demográfico, el flujo vehicular y las condiciones de las vías existentes están disponibles y constituyen un recurso valioso para entender las limitaciones de la infraestructura actual. Estos antecedentes permiten sustentar técnicamente la necesidad de intervenir en las vías para mejorar la conectividad movilización y la calidad del servicio vial.

Actualmente, en el cantón, el estado de las vías rurales evidencia un deterioro significativo y una insuficiente capacidad para satisfacer las demandas del tráfico. Frente a este panorama, el diseño de un trazado geométrico adecuado se presenta como una alternativa viable para mejorar las condiciones de las vías rurales.

Implementar soluciones que incluyan estudios actualizados del terreno, mejores técnicas de diseño y un enfoque integrado con la planificación urbana podría resolver los problemas existentes. Estas estrategias no solo mejorarían la calidad de las vías, sino que también contribuirían a optimizar el transporte, reducir los costos operativos y fomentar el desarrollo sostenible del sitio "El Quemado".

8

la siguiente interrogante: ¿Es inadecuado el servicio vial que reciben los usuarios de las vías rurales de la ciudad de Santa Rosa?

Como base para el desarrollo del trabajo de titulación se han planteado las siguientes preguntas científicas: ¿Existe un buen diseño geométrico de carreteras que permita un adecuado servicio de vialidad para los habitantes del sitio "El Quemado" ?, ¿Cuáles son las condiciones actuales de las vías rurales del sitio "El Quemado" ?, ¿Cuál es una posible alternativa para el mejoramiento de las vías rurales del sitio "El Quemado"?

1.4 Delimitación del objeto de estudio

El presente trabajo de investigación se enfoca en las vías en zonas rurales que presenten trazados geométricos deficientes, particularmente se tratará el caso de la ciudad de Santa Rosa en la provincia de El Oro. El trabajo se centrará en analizar datos obtenidos en campo sobre las condiciones actuales de la carretera, con el objetivo de establecer su capacidad estructural actual. A partir de la información recolectada sobre el tráfico vehicular, las características del suelo y el Índice de Capacidad de Soporte (CBR), se determinarán los espesores de las capas de base, subbase y rodadura necesarios para definir una especificación técnica del tipo de pavimento adecuado para la vía rural en estudio. Esta especificación técnica se basará en las normas del Ministerio de Obras Públicas (MOP), estableciendo la clase y tipo de materiales requeridos para las capas de base y subbase, así como el tamaño y características del material a utilizar en la capa de rodadura.

La vía de estudio está compuesta por 1 carril bidireccional con 5m de ancho de carril y sirve como conexión entre varias fincas y terrenos que se dedican al sector ganadero y agrónomo de la ciudad. La vía representa una ruta importante para el cantón ya que conecta la zona rural con la zona urbana proporcionando un eje hacia el cual la ciudad puede expandirse (Gobierno Autónomo Descentralizado Provincial de El Oro, 2019). Tiene su inicio a partir de la Vía Bella María y termina su recorrido en la Parroquia Nueva Santa Rosa con una extensión aproximada de 9.1 km. En la siguiente tabla se especifican las coordenadas de inicio y fin del tramo y se presenta una ilustración demostrativa.

9

1.5 Justificación

En los últimos años, Ecuador ha experimentado importantes avances en el sector vial, con la mejora y construcción de nuevas carreteras. Estos proyectos han impulsado el desarrollo de pequeñas comunidades, favoreciendo el aumento de la producción agrícola y optimizando la capacidad de transporte de sus productos hacia diferentes mercados. La inversión en infraestructura vial desempeña un papel crucial en el desarrollo de sectores específicos y de la economía en general, ya que facilita la conexión entre personas y mejora el acceso a servicios públicos y mercados, como los de bienes, servicios y empleo. Los proyectos de construcción de carreteras estén diseñados para beneficiar a una localidad específica, pero su impacto puede trascender y extenderse significativamente, mejorando tanto la accesibilidad absoluta como relativa de la región, lo que podría promover el desarrollo económico.

El sistema vial del cantón Santa Rosa está estratégicamente integrado tanto a nivel provincial como nacional, aprovechando su ubicación geográfica e infraestructura para consolidarse como un punto clave de conectividad. Este cantón funciona como un nodo fundamental que facilita la articulación dentro de la provincia y la conexión con diversos puertos del país. No obstante, el diseño de las vías presenta deficiencias que generan inquietud respecto a la seguridad vial y sus repercusiones en la situación socioeconómica de la región. Frente a estos desafíos, implementar un diseño geométrico actualizado y adaptado a las necesidades actuales de movilidad se presenta como una solución viable. Este proyecto permite consolidar los saberes teóricos y prácticos adquiridos durante la formación académica, desarrollando habilidades en la ejecución de trabajos técnicos y fortaleciendo la experiencia en el ámbito del diseño vial. Su elaboración es parte del proceso para la obtención del título de Ingeniero Civil, integrando consideraciones técnicas en el diseño geométrico y estructural de carreteras. Asimismo, su implementación busca optimizar la funcionalidad de las carreteras analizadas, incrementando su nivel de servicio y garantizando condiciones de seguridad para el flujo vehicular.

10

1.6 Objetivos

1.6.1. Objetivo General

Diseñar una alternativa de trazado geométrico en vías rurales mediante la realización de estudios técnicos, análisis de laboratorio y el uso de herramientas tecnológicas; que permita el alcance de un servicio vial adecuado para los usuarios del tramo de la carretera Al Quemado, desde la abscisa 0+000 hasta la abscisa 3+187, contribuyendo así con el desarrollo socioeconómico de este sitio y por ende de la ciudad de Santa Rosa.

1.6.2. Objetivos específicos

- Examinar las alternativas de diseño en trazado geométrico para vías rurales mediante la revisión de bibliografía pertinente y estudios previos para la determinación de criterios de diseño.
- Evaluar el tramo de la vía rural Al Quemado mediante estudios técnicos para la determinación de su capacidad de soporte y las problemáticas existentes en cuanto a su funcionalidad y durabilidad.
- Proponer un diseño de vía rural en el tramo 0+000 a 3+187 de la vía Al Quemado a partir de los resultados del análisis técnico y las condiciones del tráfico que garanticen su desempeño adecuado y la seguridad vial de los usuarios.

11

2. CAPITULO II: MARCO TEÓRICO

2.1 Antecedentes contextuales

2.1.1. Macro

A escala global, el trazado geométrico de las vías constituye un elemento clave en la planificación y diseño de infraestructuras viales. Por ejemplo, en la carretera rural NH-23 en India, evaluada por Garnaik et al. (2023), se utilizó un Sistema de Inferencia Difusa

(FIS) implementado a partir de datos recolectados en campo y modelos elaborados a base de conocimientos de expertos. Este sistema permitió analizar factores críticos como radios de curva pequeños, ángulos de deflexión pronunciados y visibilidad limitada, identificando patrones de riesgo. Mediante la integración con herramientas como MATLAB, AutoCAD y MX Road, se propusieron intervenciones como ajustes en los radios horizontales y transiciones de superelevación, logrando reducir significativamente los accidentes en la vía. Además, el sistema permitió predecir el impacto de estas intervenciones en el comportamiento de los conductores, facilitando un enfoque preventivo para mejorar la seguridad vial.

De manera complementaria, Lopes et al. (2019) llevaron a cabo un estudio comparativo sobre software para el diseño geométrico de carreteras, evaluando herramientas como TCP-MDT, AutoCAD Civil 3D y TopoGRAPH en el diseño de un tramo en Málaga, España. Los resultados mostraron que TCP-MDT y TopoGRAPH destacaron en el cálculo de superelevaciones y superanchos, alineándose con normativas internacionales como el Manual de Proyecto Geométrico de Carreteras (DNIT, 1999) y las normas AASHTO (2011). TCP-MDT sobresale por su facilidad de uso y precisión en la generación de alineamientos horizontales, mientras que TopoGRAPH permite un análisis detallado de pendientes y transiciones, lo que resulta útil en terrenos irregulares. Por otro lado, AutoCAD Civil 3D se destacó en simulaciones de volúmenes de corte y relleno, ofreciendo una visualización dinámica que optimiza el diseño y reduce errores en la planificación del movimiento de tierras. Estos hallazgos resaltan la importancia de seleccionar herramientas tecnológicas adecuadas para mejorar la precisión y eficiencia en proyectos viales.

Por otro lado, Maher & Ebrahimi (2019) estudiaron el comportamiento estructural de pavimentos en configuraciones de una sola capa y de múltiples capas. A través de

12

experimentos de laboratorio, como ensayos de resistencia a la compresión y capacidad de soporte, y modelos numéricos que simularon condiciones de carga dinámica, identificaron que las configuraciones multicapa ofrecían mayor resistencia y flexibilidad. Estas pruebas permitieron analizar el comportamiento estructural de las capas en diferentes escenarios de carga y humedad, lo que fundamentó la recomendación del uso de aditivos como cal o cemento para estabilizar suelos en proyectos exigentes. Adicionalmente, el estudio identificó cómo la interacción entre las capas contribuye a mejorar la distribución de cargas, prolongando la vida útil del pavimento.

Asimismo, Caro & Caicedo (2017) analizaron tecnologías sostenibles para vías terciarias, destacando la importancia de adaptar soluciones a las condiciones locales. Este estudio resalta el empleo de materiales no convencionales y la participación comunitaria como pilares para mejorar la conectividad rural. Entre los criterios evaluados se incluyeron aspectos ambientales como la reducción del impacto ecológico, económicos como la optimización de recursos locales y sociales como la integración de las comunidades en el mantenimiento de las vías.

Finalmente, Virsis et al. (2020) abordaron el diseño vial en suelos de baja capacidad

portante, como turba y terrenos orgánicos, proponiendo técnicas innovadoras como columnas combinadas de concreto y grava. Estos métodos demostraron ser eficaces para estabilizar tramos críticos, asegurando la funcionalidad y prolongando la vida útil de las carreteras. La investigación incluyó simulaciones de deformación bajo diferentes condiciones de carga, lo que permitió optimizar las técnicas empleadas según las particularidades del terreno.

2.1.2. Meso

En el ámbito regional, la evaluación de velocidades de operación es fundamental para garantizar la seguridad vial y optimizar el diseño geométrico. En Ecuador, García-Ramirez et al. (2017) analizaron cómo las velocidades varían según el día y la hora en tramos rectos de carreteras rurales en el cantón Loja, proporcionando información clave para determinar las condiciones críticas de operación en tramos rectos.

Complementariamente, García-Ramírez & Alverca (2019) desarrollaron ecuaciones de predicción para curvas horizontales y entre-tangencias en carreteras montañosas, considerando variables como el radio de las curvas y las pendientes longitudinales.

13

Ambos estudios emplearon herramientas avanzadas como MetroCount y Video VBOX

Lite, las cuales permitieron obtener datos precisos sobre velocidades de operación en

tiempo real y bajo diferentes condiciones de tráfico. Estas herramientas no solo

garantizaron una recolección confiable de datos, sino que también facilitaron la

calibración de modelos representativos del contexto rural ecuatoriano, reflejando patrones

de tráfico específicos y comportamientos de los conductores locales.

Además, Zhangallimbay & Ordoñez (2022) evaluaron el impacto de la infraestructura

vial en la productividad agrícola en provincias como El Oro y Manabí. Su modelo de

diferencias en diferencias demostró que las mejoras viales incrementaron

significativamente la productividad y ventas de cultivos permanentes, destacando la

importancia de invertir en conectividad rural para potenciar la economía local. Este

enfoque resalta cómo las inversiones en infraestructura no solo mejoran la movilidad,

sino que también tienen un impacto directo en el desarrollo económico y social de las

comunidades.

2.1.3. Micro

A nivel provincial, se han llevado a cabo esfuerzos significativos para fortalecer la infraestructura vial, buscando mejorar la conectividad y el impacto positivo en la comunidad. Galarza et al. (2024) y Reyes et al. (2022) analizaron el diseño geométrico de carreteras identificando deficiencias en radios de curva, peraltes y anchos de carril, los cuales incrementan el riesgo de accidentes. El estudio utilizó aforos vehiculares y levantamientos topográficos con drones RTK para obtener datos precisos sobre velocidad de operación, pendientes y dimensiones de las curvas. A partir de estos datos, emplearon AutoCAD Civil 3D para modelar alternativas de diseño que mejoraran la seguridad y cumplieran con normativas nacionales. Los resultados mostraron que las propuestas lograron aumentar los radios de curva, ajustar los peraltes y ampliar los anchos de carril, lo que permitió una reducción significativa en los riesgos de accidentes y una mejora

notable en la comodidad y seguridad de los usuarios.

Además, el estudio de Vásquez et al. (2023) abordó la optimización de espesores de pavimento en la vía rural Chilla - Quera mediante técnicas de estabilización con cemento hidráulico, destacando soluciones prácticas que incrementaron la durabilidad y resistencia estructural de las vías rurales. La metodología incluyó un análisis detallado de las

14

propiedades del suelo y su interacción con las cargas vehiculares previstas, permitiendo determinar configuraciones óptimas para las capas de base y sub-base. Los resultados evidenciaron que estas soluciones no solo mejoraron la funcionalidad de la vía, sino que también redujeron significativamente los costos de mantenimiento a mediano y largo plazo.

Estos estudios subrayan la importancia de integrar tecnologías modernas, metodologías adaptadas al contexto local y un enfoque holístico para garantizar que las infraestructuras viales cumplan con las necesidades actuales y futuras de la población.

2.2 Antecedentes conceptuales

La infraestructura vial constituye un pilar esencial para el desarrollo regional, pues fomenta la conectividad entre comunidades, impulsa el intercambio económico y mejora la calidad de vida de la población. Como señalan Muhammed et al. (2023), los ejes viales, definidos como las carreteras que estructuran la red vial de un territorio, desempeñan un papel crucial al conectar zonas urbanas, periurbanas y rurales.

La infraestructura vial constituye el conjunto de elementos físicos que permiten la circulación segura y eficiente de vehículos y peatones. Comprende tanto las vías como sus componentes estructurales (pavimento, subrasante, base, subbase), geométricos (alineamientos, secciones, pendientes) y funcionales (señalización, drenaje, control de tránsito). En el ámbito rural, la infraestructura vial cumple un rol fundamental al conectar zonas agrícolas y productivas con centros poblados, favoreciendo el desarrollo económico y social de las comunidades. Muhammed et al. (2023)

Además, la conectividad vial, entendida como la capacidad de una red de carreteras para enlazar diferentes puntos de un territorio, es un indicador clave del desarrollo regional.

Una red vial eficiente no solo mejora la accesibilidad, sino que también impulsa la inclusión social al facilitar el acceso a servicios esenciales como la educación y la salud.

En este contexto, las vías rurales adquieren una función particular. De acuerdo con

Narvaez (2017), estas carreteras, a diferencia de las urbanas o de alta capacidad, son esenciales para integrar comunidades aisladas con centros de producción y comercio. Sin embargo, su diseño y mantenimiento presentan desafíos únicos, como la adaptación a

15

presupuestos restringidos. En las regiones agrícolas, estas vías son especialmente importantes, ya que facilitan el transporte de productos hacia mercados más amplios, promoviendo así la economía local.

terrenos topográficamente complejos, el uso de materiales locales y la gestión de

Para garantizar la funcionalidad y durabilidad de la infraestructura vial, es fundamental

realizar una evaluación integral de las carreteras. Según Surichaqui et al. (2023), este análisis incluye aspectos esenciales como la resistencia estructural, el tráfico vehicular y las condiciones de seguridad vial. A través de levantamientos topográficos y estudios de suelo, se identifican áreas críticas que requieren mejoras inmediatas o rediseños significativos.

En particular, los levantamientos topográficos permiten recolectar datos taquimétricos del relieve terrestre mediante el uso de equipos como estaciones totales y GPS, herramientas fundamentales para calcular volúmenes de explanación y elaborar diseños geométricos adaptados al terreno, minimizando los impactos ambientales (Surichaqui et al., 2023). El tráfico vehicular es otro componente clave en la evaluación y gestión de carreteras. Wang et al. (2013) lo define como la interacción dinámica entre velocidad, densidad, flujo y congestión, factores interrelacionados que determinan la capacidad operativa de la vía. A medida que la densidad aumenta, la velocidad disminuye, afectando directamente el flujo vehicular y la funcionalidad de la carretera. Este comportamiento se analiza mediante aforos vehiculares, que consisten en el conteo de vehículos que transitan por un punto específico durante un periodo determinado.

Los aforos permiten calcular indicadores clave como el Tránsito Promedio Diario Anual (TPDA), fundamental para clasificar las vías y definir los requisitos de diseño (Rodriguez et al., 2023). Además, el TPDA se complementa con el análisis de los ejes equivalentes (ESALS), que mide el impacto acumulativo de las cargas pesadas sobre la estructura del pavimento, proporcionando información crucial para garantizar niveles de servicio adecuados.

En cuanto a la clasificación de las carreteras, Montaño De León et al. (2015) destacan tres enfoques principales: transitabilidad, administrativa y técnica oficial. La transitabilidad evalúa el estado constructivo de las vías, clasificándolas como pavimentadas, revestidas

16

o de terracería. La clasificación administrativa organiza las vías según la entidad gubernamental responsable de su construcción y mantenimiento, ya sea federal o estatal. La clasificación técnica oficial, utilizada principalmente en el diseño geométrico de autopistas, categoriza las vías según el TPDA, estableciendo su jerarquía y características específicas. Esta clasificación permite ajustar el diseño de las carreteras a las demandas reales de tráfico, asegurando su funcionalidad. De manera general, se definen seis tipos de vías (A4, A2, B, C, D, y E) las cuales, según el rango de TPDA que soportan, se clasifican en vías de alta capacidad (TPDA de 5,000 a 20,000 vehículos) y vías de baja capacidad (TPDA de hasta 100 vehículos).(Montaño De León et al., 2015) La consistencia de la vía es un concepto central en el diseño geométrico de carreteras, ya que garantiza que el trazado de la infraestructura vial responda de manera predecible y natural a las expectativas de los conductores. Según Cantisani & Del Serrone (2020), esta característica asegura que los elementos geométricos consecutivos estén coordinados para promover un comportamiento de conducción uniforme y armonioso, minimizando el riesgo de maniobras inseguras. De manera complementaria, Oñate-Bastidas & Calero-Valenzuela (2023) destacan que una vía consistente permite a los conductores transitar a

una velocidad cómoda y constante, reforzando tanto la seguridad como la comodidad del viaie.

Desde esta perspectiva, el diseño geométrico integra múltiples elementos que aseguran la funcionalidad y sostenibilidad de las carreteras. Según Vivek Gajanan Sukalkar et al. (2022), estos elementos incluyen alineaciones horizontales y verticales, distancias de visibilidad, elementos transversales y características de intersecciones. Además, consideran factores de mayor escala como la velocidad de diseño, las condiciones topográficas, el tráfico proyectado y los impactos ambientales.

Paikun et al. (2021) dividen las alineaciones verticales en tramos rectos y curvos, diseñados utilizando curvas circulares completas, curvas de transición espiral-circular y curvas espirales modificadas, que optimizan la seguridad y funcionalidad del trazado. Por otro lado, la alineación vertical, también analizada por Paikun et al. (2021), se enfoca en el diseño del perfil longitudinal de la carretera, considerando pendientes positivas (ascensos) y negativas (descensos), que se combinan para formar curvas convexas y cóncavas

17

Elementos como los peraltes o superelevaciones son fundamentales para garantizar la seguridad en las curvas. Gil-Mora & Sosa-Aguirre (2021) sostiene que estas inclinaciones transversales contrarrestan las fuerzas centrífugas, proporcionando estabilidad vehicular y reduciendo el riesgo de derrape o vuelco. Otros aspectos críticos son las pendientes, que deben mantenerse dentro de límites razonables para evitar problemas de visibilidad y desgaste excesivo de los sistemas de frenado. Finalmente, el ancho de carril y los sobreanchos en curvas contribuyen a la maniobrabilidad de los vehículos, mejorando la seguridad y fluidez del tránsito.

La seguridad y operación vial también son prioritarias en el diseño y gestión de carreteras.

González et al. (2023) destaca las zonas laterales a las vías como un elemento clave y

menciona que estas deben estar libres de obstáculos peligrosos y contar con barreras de

contención para minimizar riesgos.

Asimismo, la variabilidad en las velocidades vehiculares influye significativamente en la operación vial. Maghrour Zefreh & Török (2020) menciona que esta distribución está determinada por factores como la densidad vehicular y las condiciones de la vía Galarza et al. (2024) añaden que la velocidad de diseño y la velocidad de operación son determinantes para la seguridad vial; mientras la primera establece un límite seguro, la segunda refleja las condiciones reales de tránsito. Una discrepancia significativa entre ambas puede aumentar el riesgo de accidentes.

La densidad vehicular es otro factor relevante, ya que mide la cantidad de vehículos presentes en una sección de la vía y es clave para determinar el nivel de servicio, según los rangos definidos en el manual HCM 2010. Peñafiel et al. (2022) explican que este nivel clasifica la calidad del flujo vehicular desde "A" (flujo libre) hasta "F" (congestión severa). Cuando una vía alcanza su capacidad máxima o el límite de su nivel de servicio, Paladines et al. (2022) destacan la necesidad de ajustar sus especificaciones técnicas para satisfacer las nuevas demandas de tráfico, garantizando tanto la movilidad como el

desarrollo urbano y económico.

Finalmente, el diseño de pavimentos complementa esta evaluación integral de las carreteras. Según Rogel et al. (2023), este proceso busca establecer las características estructurales y funcionales del pavimento para responder a las demandas del tráfico y las condiciones del terreno. Yu et al. (2020) explican que la estructura del pavimento está

18

compuesta por varias capas: subrasante, subbase, base y capa de rodadura. Cada una de estas capas desempeña un papel específico para soportar las cargas vehiculares y prevenir deformaciones.

Dentro de la infraestructura vial, el pavimento es el componente estructural encargado de soportar las cargas de tránsito y transmitirlas progresivamente hacia el terreno natural. Su diseño depende de múltiples factores como la resistencia del suelo, el volumen y tipo de tráfico, las condiciones climáticas y los recursos económicos disponibles. Según su comportamiento estructural y materialidad, los pavimentos pueden clasificarse en: flexibles, rígidos y semirrígidos. La elección de cada uno depende de factores como el tipo de suelo, volumen de tránsito, disponibilidad de materiales, costos y facilidad de mantenimiento. (Castro & Castro, 2020)

El pavimento flexible, también denominado pavimento asfáltico, se caracteriza por estar conformado por una capa de rodadura asfáltica, una base granular y una subbase. Este tipo de estructura permite deformaciones controladas en las capas inferiores sin comprometer la integridad del pavimento. Su diseño está enfocado en distribuir las cargas vehiculares hacia la subrasante mediante un sistema de capas sucesivas. De acuerdo con

Barreto et al. (2018) "está

scielo.sld.cu | Análisis comparativo de ejes equivalentes obtenidos mediante método aashto 93 y los proporcionados por pesaje en balanza fija de vehículos http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202018000100059

conformado por capa asfáltica en la superficie de rodadura, la

cual permite pequeñas deformaciones en capas inferiores sin que la estructura falle.

Debajo de esta capa, se encuentra base granular y capa de sub-base, destinadas a distribuir

y transmitir cargas originadas por el tránsito"

La capa de rodadura, ubicada en la parte superior, está compuesta por mezclas asfálticas, como asfalto en caliente (HMA) o mezclas modificadas con polímeros. Esta capa debe resistir el desgaste, impermeabilizar la superficie y proporcionar suficiente fricción para garantizar la seguridad y comodidad del conductor.

Inmediatamente debajo se encuentra la base, una capa elaborada con materiales granulares procesados o estabilizados, como grava triturada o mezclas tratadas con agentes hidráulicos, cuya función es distribuir las cargas hacia las capas inferiores y ofrecer una alta resistencia al corte.

La subbase, que actúa como una capa intermedia de soporte, está formada por materiales granulares no tratados o estabilizados con cemento, cal u otros aditivos químicos. Estos

19

materiales, como gravas naturales o trituradas, deben cumplir con límites granulométricos específicos, proporcionando resistencia a las deformaciones y facilitando el drenaje del

pavimento.

Por último, la subrasante, que puede consistir en suelo natural o mejorado, debe garantizar una adecuada capacidad de soporte con un CBR mínimo especificado, además de mantener una densidad suficiente para evitar asentamientos y fallas estructurales. La correcta selección y preparación de los materiales, como establece el NEVI-2012, asegura la funcionalidad y durabilidad del pavimento, garantizando una infraestructura vial segura y sostenible bajo diversas condiciones climáticas y de tráfico.

El pavimento rígido está constituido principalmente por losas de concreto hidráulico, las cuales poseen alta rigidez estructural. Este tipo de pavimento transmite las cargas hacia el terreno mediante el efecto de losas apoyadas sobre una base, y su capacidad de carga depende en gran medida de la resistencia del concreto. Rogel et al. (2023) menciona que está formado hidráulicamente por losas de hormigón, en ocasiones reforzado con acero. Esta losa va sobre un pedestal. Aunque su costo inicial es más elevado que el flexible, ofrece una vida útil mayor y menor frecuencia de mantenimiento.

El pavimento semirrígido, también conocido como mixto, representa una solución intermedia entre los dos anteriores. Combina una capa bituminosa sobre capas tratadas con conglomerantes hidráulicos, proporcionando mayor capacidad estructural que un pavimento flexible, pero con menor rigidez que uno rígido. De acuerdo con el Ministerio de Transporte y Obras públicas del Ecuador (2013) en la Norma Ecuatoriana Vial NEVI-12 Vol. 2B, "el pavimento semirrígido es un firme constituido por un pavimento bituminoso de cualquier espesor sobre una o más capas tratadas con conglomerantes hidráulicos, con espesor conjunto igual o superior a 20 cm

2.3 Antecedentes referenciales

En su investigación, González et al. (2023) describe una metodología de 3 pasos para el diseño sostenible de ejes viales, en la primera fase categoriza las zonas de influencia directa del eje vial para su posterior análisis de impacto. La segunda fase consistió en la realización de aforos vehiculares con el fin de obtener el TPDA, realizar una proyección del tráfico sobre el eje y clasificar la vía según los estándares del Ministerio de Transporte y Obras Públicas (MTOP).

20

Finalmente, realizó la evaluación de los parámetros geométricos clave como los radios de curva, las distancias de visibilidad, los peraltes y el ancho de carril, siguiendo las Normas Ecuatorianas Viales (NEVI-12). Los resultados finales indicaron el nivel de servicio de la via y además le permitieron identificar deficiencias en aspectos como conectividad vial, seguridad en las zonas laterales y elementos geométricos, incluyendo señalización y barreras de protección.

Rogel et al. (2023) analizaron la problemática de una vía alterna en condiciones deficientes, proponiendo un diseño geométrico optimizado para mejorar su funcionalidad. La metodología empleada incluyó levantamientos topográficos utilizando una estación total SOKKIA CX-105 y RTK, los datos fueron procesados en el software Civil 3D para generar modelos digitales del terreno. Además, se realizaron ensayos de laboratorio en seis calicatas extraídas del lugar de estudio, aplicando las normativas AASHTO y ASTM,

evaluando parámetros como el índice CBR para clasificar la calidad de la subrasante. En cuanto al análisis del tráfico, se efectuaron aforos vehiculares que determinaron un Tránsito Promedio Diario Anual (TPDA), a partir de este dato se clasificó la vía como de cuarto orden según los estándares del MTOP. Con base en estos estudios, se diseñó un paquete estructural de pavimento flexible compuesto por capas de rodadura, base, subbase y mejoramiento, ajustando sus espesores a las condiciones del tráfico proyectado. Navarro (2023) abordó el diseño geométrico de la carretera Arenillas - Intersección La Cuca, con el objetivo de mejorar la conectividad y funcionalidad de una vía de importancia agrícola. La metodología incluyó levantamientos topográficos para la generación de una malla de puntos y modelar el terreno en Civil 3D. Se realizaron ensayos de laboratorio en tres calicatas, con pruebas de granulometría, límites de Atterberg, Proctor modificado y CBR, logrando con esto la clasificación del tipo de suelo existente. El estudio de tráfico empleó conteos manuales para la determinación del TPDA, clasificando la vía como de mediana capacidad según el MTOP. Para el diseño geométrico, se evaluaron parámetros como radios mínimos de curva y pendientes longitudinales, adoptando una velocidad de diseño de 60 km/h en la zona rural y 50 km/h en la zona urbana. En el diseño estructural del pavimento flexible, se utilizó el método AASHTO 93, calculando espesores de 3 pulgadas para la capa de rodadura, 7 pulgadas para la base granular y 6 pulgadas para la subbase. Los resultados mostraron

21

que las propuestas realizadas mejoraron significativamente la seguridad y movilidad en la vía, reduciendo costos de transporte y mejorando la calidad de vida de los usuarios al facilitar el acceso a mercados y servicios.

3.1.1. Tipo de investigación

Según Arias (2012), los tipos de investigación pueden clasificarse en documental, de campo y experimental, dependiendo de la naturaleza de los datos y el procedimiento metodológico empleado. En el presente trabajo se integran estos tres enfoques, debido a las características del objeto de estudio y la necesidad de abordarlo desde una perspectiva integral.

- Investigación documental: Permitió sustentar teórica y técnicamente el proyecto,
 mediante la revisión de normativas, libros y artículos científicos relacionados con
 el diseño geométrico de vías rurales.
- Investigación de campo: Se aplicó mediante el levantamiento de información directa en el sitio de estudio, como el aforo vehicular, el levantamiento topográfico y la toma de muestras de suelo.
- Investigación experimental: Se desarrolló a través de ensayos de laboratorio aplicados a las muestras obtenidas en campo, con el fin de determinar las propiedades físicas y mecánicas del suelo para el diseño estructural.
 La combinación de estos tres tipos de investigación permitirá desarrollar un análisis integral del tramo vial, desde sus condiciones reales hasta la formulación de una propuesta técnica fundamentada.

3.2 Descripción de la población

La población de esta investigación estará conformada por los vehículos que transitan a diario por el tramo de la vía rural Al Quemado, ubicada en el cantón Santa Rosa. Dado que se trata de una carretera colectora de tercer orden, con características no pavimentadas y localizada en una zona predominantemente agrícola y ganadera, el flujo vehicular es moderado pero constante, compuesto principalmente por automóviles livianos y camiones tanto livianos como pesados.

Como parte de la recolección de datos, se realizará un aforo vehicular manual durante 7 días consecutivos durante las horas pico, donde se registrará el tipo y frecuencia de paso de vehículos. El TPDS obtenido será la población de este trabajo de titulación.

23

3.3 Método teórico

3.3.1. Revisión bibliográfica

La investigación iniciará con una revisión bibliográfica que permitirá establecer el marco conceptual y técnico del proyecto. Se recopilará y analizará información proveniente de fuentes normativas, libros especializados, artículos científicos y documentos institucionales relacionados con el diseño geométrico de vías rurales.

Entre los principales documentos que se estudiarán se encuentran las Normas

Ecuatorianas de Vialidad NEVI-12 y el Manual AASHTO, los cuales orientarán los criterios técnicos del análisis, la caracterización del suelo y el diseño estructural de pavimentos. Esta fase teórica proporcionará las bases metodológicas necesarias para la ejecución de las actividades prácticas del estudio.

Los métodos empíricos involucran la observación directa y la obtención de datos reales mediante trabajo de campo y ensayos de laboratorio. (Hernández-Rodríguez et al., 2021). Partiendo de esta premisa, en el presente trabajo de titulación se llevarán a cabo distintas etapas que abarcarán el reconocimiento del área de estudio, la recolección de datos en campo, el análisis de la situación actual, la propuesta de rediseño geométrico, la modelación digital del proyecto y el análisis comparativo de los resultados.

3.4.1. Reconocimiento del área de estudio

Se procederá con la identificación del tramo objeto de estudio, correspondiente a la vía rural Al Quemado, ubicada en el cantón Santa Rosa. Se realizará una inspección visual preliminar para observar el estado funcional de la vía, su geometría general y su entorno físico. Esta etapa permitirá planificar adecuadamente la ejecución de las actividades de campo y seleccionar los puntos clave para la toma de datos.

3.4.2. Levantamiento topográfico

Para el levantamiento topográfico del tramo vial en estudio se empleará una estación total marca Sokkia modelo CX-105, complementada con un GPS. El objetivo será registrar con precisión las coordenadas, cotas, radios de curvatura, pendientes longitudinales y

24

transversales, así como los anchos de calzada a lo largo del eje vial y sus márgenes. Los datos registrados se anotarán en una ficha técnica (Anexo 1)

3.4.3. Estudio del tránsito vehicular

Se llevará a cabo un aforo vehicular manual durante siete días consecutivos, en tres rangos horarios considerados como horas pico: de 06:00 a 09:00, de 11:00 a 14:00 y de 15:00 a

18:00. Se registrará

repositorio.upt.edu.pe

https://repositorio.upt.edu.pe/bitstream/handle/20.500.12969/4200/Sanchez-Zea-Quispe-Choque.pdf?sequence=

el tipo y la cantidad de vehículos que circulan por el

tramo, lo que

permitirá calcular el Tránsito Promedio Diario Semanal (TPDS), proyectar el Tránsito

Promedio Diario Anual (TPDA) y estimar los Ejes Equivalentes (ESALS), necesarios

para el diseño estructural del pavimento. Los datos registrados se anotarán en una ficha técnica. (Anexo 2)

3.4.4. Estudio de suelos

Se ejecutarán cuatro calicatas distribuidas estratégicamente a lo largo del tramo vial, priorizando los sectores donde se evidencien cambios significativos en la estratigrafía del suelo. En cada calicata se extraerán muestras a profundidades de 0.00 m, 0.50 m, 1.00 m y 1.50 m. Las muestras serán analizadas en laboratorio mediante ensayos estandarizados conforme a las normas AASHTO. entre ellos: contenido de humedad, análisis granulométrico, límites de Atterberg, ensayo Proctor modificado y CBR. Con estos resultados se clasificará el suelo bajo los sistemas SUCS y AASHTO y se determinará su capacidad de soporte. El registro de los datos de los ensayos se llevará a cabo en las distintas fichas presentadas en el Anexo 3.

3.4.5. Análisis de la situación actual

Con la información recolectada se procederá a evaluar las condiciones geométricas y

estructurales existentes del tramo vial. Se identificarán deficiencias en alineaciones, pendientes, radios de curva y anchos de vía, comparándolos con los parámetros establecidos por la normativa NEVI-12. Asimismo, se interpretarán los resultados de los ensayos de laboratorio para detectar debilidades del suelo que puedan comprometer la durabilidad de la vía.

3.4.6. Propuesta de Trazado geométrico

Sobre la base del análisis anterior, se elaborará una propuesta técnica que ajuste los elementos geométricos a los lineamientos establecidos por la normativa vigente. Se planteará el rediseño de curvas horizontales y verticales, se optimizarán pendientes y se

25

redefinirán los anchos de calzada. Además, en función de los resultados del TPDA, CBR y ESALS, se calcularán los espesores necesarios para la capa de rodadura, la base y la subbase, seleccionando los materiales adecuados para cada caso.

3.4.7. Modelación y diseño digital

La propuesta será modelada mediante el software Autodesk Civil 3D. Se generarán perfiles longitudinales, secciones transversales, y se representarán las curvas horizontales y verticales del trazado proyectado. Este modelo servirá para validar geométricamente el diseño propuesto comparándolo con normativas vigentes y visualizar su comportamiento técnico ante las condiciones de tráfico y terreno.

3.4.8. Análisis de resultados y conclusiones

Finalmente, se realizará una comparación entre el estado actual de la vía y la propuesta de rediseño. Se evaluarán las mejoras logradas en términos de funcionalidad, seguridad, durabilidad y cumplimiento normativo. Este análisis permitirá fundamentar las conclusiones del estudio y formular recomendaciones.

26

4. CAPITULO IV: ANÁLISIS DE RESULTADOS

4.1 Clasificación preliminar de la vía

A partir del reconocimiento en campo realizado y del análisis de las condiciones actuales de la vía, se establece preliminarmente que el tramo objeto de estudio corresponde a un camino vecinal, según lo definido en la Norma Ecuatoriana Vial (Ministerio de Transporte y Obras públicas del Ecuador, 2013) Esta clasificación se fundamenta en que la vía conecta zonas de producción agrícola con la cabecera cantonal, presenta una superficie no pavimentada (lastre o afirmado), y carece de diseño geométrico formal. Además, su

trazo actual fue abierto por los propios moradores de la comunidad para atender necesidades locales de movilidad. La NEVI-12 describe a los caminos vecinales como

"carreteras

dspace.ups.edu.ec

https://dspace.ups.edu.ec/bitstream/123456789/29752/1/UPS-CT011934.pdf

convencionales básicas que incluyen a todos los caminos rurales no incluidos

en las denominaciones anteriores, destinados a recibir el tráfico doméstico de poblaciones

rurales, zonas de producción agrícola, accesos a sitios

turísticos" (Ministerio de

Transporte y Obras públicas del Ecuador, 2013). Esta categorización permitirá orientar el diseño geométrico y estructural de manera coherente con su jerarquía funcional y contexto rural.

4.2 Levantamiento topográfico y análisis preliminar del trazado

Se ejecutó el levantamiento topográfico del tramo en estudio, utilizando coordenadas georreferenciadas (Norte, Este y elevación) siguiendo con el alineamiento tomando puntos cada 20m longitudinalmente y tomando puntos transversales en cada uno de estos con el fin de obtener una faja topográfica. El tramo evaluado corresponde a una vía de topografía predominantemente llana, con mínimas variaciones altimétricas. Se identificó un alineamiento mayoritariamente recto, interrumpido por cinco curvas distribuidas a lo largo del trayecto. Debido a que la vía fue abierta de manera empírica por los habitantes de la zona, se observa que dichas curvas no fueron diseñadas con base en criterios técnicos, por lo que preliminarmente se presume que los radios de curvatura no cumplen con los valores mínimos exigidos por la NEVI-12 para caminos vecinales. El registro completo de los datos se evidencia en el antes mencionado anexo 1.

27

4.3 Aforo vehicular

Con el objetivo de caracterizar el flujo vehicular en el tramo rural de la vía Al Quemado, se realizó un aforo manual durante siete días consecutivos, del 31 de marzo al 6 de abril del 2025. El conteo se efectuó en intervalos horarios de 60 minutos, entre las 06:00 y las 18:00, abarcando las horas con mayor actividad vehicular, según observaciones preliminares. Los datos tomados en campo fueron registrados en fichas técnicas, estas se encuentran en el anexo 2.

Durante la jornada de aforo, se contabilizó un total de 1.739 vehículos, lo que representa un Tránsito Promedio Diario (TPD) de aproximadamente 249 vehículos/día. En la siguiente tabla se presentan los resultados obtenidos del conteo vehicular realizado en la vía de estudio.

4.3.1. Clasificación vehicular

Para el análisis del tipo de tránsito que circula por la vía de estudio, se realizó una clasificación vehicular conforme a lo establecido por el Ministerio de Transporte y Obras públicas del Ecuador (2013) (Anexo 4). Esta clasificación permitió agrupar los vehículos registrados durante el aforo semanal según sus características físicas y su impacto estructural sobre la vía.

En la tabla se muestra la distribución diaria del total de vehículos registrados, organizados por clases vehiculares, desde motocicletas y automóviles hasta camiones livianos y

pesados con distintas configuraciones de ejes.

En el siguiente gráfico ilustrativo se puede apreciar de mejor manera las proporciones de

la composición del tráfico según la clasificación del tipo de vehículo:

28

4.4 Trafico Promedio Diario Anual

El Tránsito

dspace.ups.edu.ec

ttps://dspace.ups.edu.ec/bitstream/123456789/30279/1/UPS-GT006283.pdf

Promedio Diario Anual (TPDA) es un indicador fundamental en el análisis

vial, ya que representa el volumen promedio de vehículos que circulan diariamente por

una carretera a lo largo de un año. Se obtiene dividiendo el tránsito total registrado en un año entre 365 días, permitiendo así estimar de forma estandarizada el uso continuo de una

vía. Este valor es fundamental para el diseño estructural y funcional de la

carretera.(Ministerio de Transporte y Obras públicas del Ecuador, 2013)

4.4.1. Tráfico promedio diario semanal

El TPDS es el promedio de vehículos que circulan diariamente por una vía durante una

semana de observación, este se calcula a partir de la siguiente ecuación:

TPDS =

5

7 ×∑

Dn

mn

т

_

×Σ

De

me

Donde:

Dn = Número de vehículos en días normales (lunes a viernes)

De = Número de vehículos en días feriados (sábados y domingos)

mn = Número de días normales

me = Número de días feriado

4.4.2. Tráfico promedio diario anual actual

El Tránsito Promedio Diario Anual (TPDA) es una medida del flujo vehicular

promedio diario durante todo un año, este se lo calculó empleando la siguiente ecuación:

 $TPDA \; (actual) = TPDS \times Fm \times Fd$

Donde:

Fd = Factor diario a) Factor mensual Para determinar el factor mensual se emplea la siguiente tabla elaborada por la MTOP, al haber realizado el aforo vehicular en el mes de abril, el factor mensual es de 1.093. 29 b) Factor diario $Fd = \sum$ TPDSTDDonde: TD = Tránsido diario El resumen de los resultados se presenta en la siguiente tabla: 4.4.3. Tráfico promedio diario anual asignado El TPDA asignado es un cálculo previo al tráfico futuro, obtenido a partir del TPDA actual, al cual se le suman incrementos por tráfico generado y desarrollado, con el fin de anticipar la demanda vehicular proyectada. (Barreto et al., 2018) TPDA (asignado) = TPDA (actual) + $Tr\acute{a}f$. generado + $Tr\acute{a}f$. desarrolladoDonde: Tráfico generado = Corresponde al incremento de vehículos que no utilizaban anteriormente la vía, e incluye viajes que antes no existían, que se hacían mediante transporte público o que tenían otros destinos, pero que ahora se efectúan por la facilidad que ofrece la infraestructura vial mejorada. scielo.sld.cu | Análisis comparativo de ejes equivalentes obtenidos mediante método aashto 93 y los proporcionados por pesaje en balanza fija de vehículos ੴ6 Es una tasa de incremento que va desde el 5% hasta el 25% del TPDA. (Barreto et al., 2018) Tráf. generado = 25% TPDA(actual) Tráfico desarrollado = Representa un crecimiento progresivo del tránsito que no habría ocurrido sin la construcción o mejora del camino. trafico desarrollado que genera el 5% de incremento del TPDA. (Barreto et al., 2018) Tráf. desarrollado = 5% TPDA(actual) 4.4.4. Tráfico promedio diario anual proyectado al 2045 dspace.ups.edu.ec (<u>^</u> -:/bitstream/123456789/25421/4/UPS-CT010666.pdf Según el Ministerio de Transporte y Obras públicas del Ecuador (2013) en su normativa

para estudios y diseños viales, el período de diseño estructural recomendado para pavimentos nuevos debe ser de 20 años, pudiendo variar entre 10 y 20 años según la

categoría funcional de la vía y las condiciones del proyecto. De acuerdo con la

clasificación preliminar de nuestra vía como camino vecinal, se escoge un período de vida

Fm = Factor mensual

30

 $TPDA (proyectado) = TPDA (asignado) \times (1 + r)n$

Donde:

r = Tasa de crecimiento segun el tipo de vehículo

n = número de años

a) Tasa de crecimiento anual

La tasa de crecimiento anual se ha determinado de la siguiente tabla:

El resumen de los resultados obtenidos del cálculo del Tráfico promedio diario anual proyectado se resumen en la siguiente tabla:

4.4.5. Clasificación de la vía de acuerdo con el tráfico proyectado

En el marco de la planificación vial nacional, la infraestructura de transporte terrestre se organiza jerárquicamente según la función que cumple cada vía dentro del sistema. El Ministerio de Transporte y Obras públicas del Ecuador (2013) establece que la red vial ecuatoriana se clasifica en tres niveles: corredor vial, colectora y vecinal.

- El corredor vial constituye la columna vertebral del sistema, permitiendo la conexión de ciudades principales, puertos, aeropuertos y pasos fronterizos. Son vías de alto volumen de tránsito, estratégicas a nivel nacional.
- Las colectoras actúan como intermediarias, enlazando a las vías vecinales con los corredores viales. Facilitan el acceso a centros poblados de menor jerarquía y zonas de producción.
- Finalmente, las vías vecinales o rurales permiten la accesibilidad directa a comunidades pequeñas, áreas agrícolas y zonas de difícil acceso. Se caracterizan por tener menor jerarquía funcional, menor volumen de tráfico y condiciones estructurales más simples.

Esta clasificación permite definir los criterios de diseño, mantenimiento y jerarquización de inversiones públicas, y es particularmente relevante en proyectos de intervención vial rural. (Ministerio de Transporte y Obras públicas del Ecuador, 2013)

31

Una vez realizada la proyección del tráfico para el periodo de diseño seleccionado según normativa (20 años), obtenemos un número de vehículos pesados para el final del periodo de diseño de 234 veh/día y un TPDA de 722 vehículos/día para el año 2045. Según este valor se puede clasificar a la vía por su clase y por su función de acuerdo con las tablas establecidas por la normativa de diseño geométrico del MOP 2003:

Se obtiene una clasificación para la vía como un Colectora clase III.

A su vez también se puede hacer uso de la clasificación dispuesta en la NEVI-12 Volumen

2A para otorgar la siguiente jerarquía:

En donde:

– C1 = Equivale a carreteras de mediana capacidad

- C2 = Equivale a carreteras convencionales básicas y camino básico
- C3 = Camino agrícola / forestal

Obteniéndose una clasificación C2

4.5 Estudios de suelos

Para evaluar las condiciones del terreno en el tramo vial Al Quemado, se llevaron a cabo cuatro calicatas distribuidas estratégicamente a lo largo del eje de la vía. Estas excavaciones permitieron obtener muestras representativas del suelo natural, con el propósito de realizar los ensayos de laboratorio necesarios para determinar las propiedades físicas, mecánicas y capacidad de la subrasante. En el anexo 3 se encuentran los valores registrados en la elaboración de los ensayos y los resultados de cada uno de ellos.

La Calicata 1, ubicada en la abscisa 0+200 km, presenta un perfil con variación de materiales finos en toda su profundidad. En el estrato superficial se encontró grava con finos de color café, seguida por un material fino arcilloso de tonalidad café oscuro. En los últimos estratos se encontró un material fino arenoso arcilloso color café rojizo

Con respecto a la Calicata 2, ubicada en la abscisa 1+200 km, esta presenta un perfil con predominio de materiales finos de carácter limo-arcilloso. En el primer estrato se identificó grava con finos de color café claro. A continuación, entre 0.50 y 1.00 m, se

32

encuentra un material fino arcilloso de tonalidad café oscuro, seguido por dos estratos consecutivos compuestos por limo arcilloso café rojizo.

La Calicata 3, ubicada en la abscisa 2+500 km, presenta un perfil con materiales de textura fina y características relativamente homogéneas en profundidad. En la capa superficial se identificó grava con finos color café, seguida por un estrato de material arcilloso rojizo entre los 0.50 y 1.00 m. En los niveles más profundos se observó un suelo fino limoso arcilloso de color café oscuro a gris.

Por último, la Calicata 4, ubicada en la abscisa 3+100 km, presenta un perfil conformado por materiales de textura mixta. En el estrato superficial se identificó grava con finos color café claro, lo que podría favorecer el drenaje inicial. A continuación, entre 0.50 y 1.00 m, se observó un suelo fino arcilloso arenoso de tonalidad café, seguido por dos estratos con material fino arenoso arcilloso café oscuro.

Una vez recolectadas las muestras, se procedió a la realización de ensayos de laboratorio con el fin de determinar las propiedades físicas y mecánicas más relevantes del material.

Estos estudios permiten conocer el comportamiento del suelo frente a las solicitaciones del tránsito, y son esenciales para definir el diseño estructural del pavimento.

Entre los parámetros analizados se encuentra el contenido de humedad natural, que refleja el estado de saturación del suelo al momento del muestreo; así como los límites de Atterberg, específicamente el límite líquido (LL), límite plástico (LP) y el índice de plasticidad (IP), que permiten clasificar la plasticidad y la cohesión del material. Este último se obtiene con la siguiente ecuación:

IP = LL - LP

También se evaluó la granulometría, a través del porcentaje de material que pasa por los

tamices N.º 4, N.º 40 y N.º 200, lo cual brinda una idea del grado de finura del suelo y su comportamiento en estado natural o compactado.

Asimismo, se realizó el ensayo Proctor modificado, con el cual se determinó la humedad óptima de compactación y la densidad seca máxima, parámetros claves para la construcción de capas de suelo adecuadamente compactadas. Finalmente, se ejecutó el ensayo CBR (California Bearing Ratio), que mide la capacidad de soporte del suelo en

33

condiciones controladas y sirve como base para calcular el espesor de las capas del pavimento. Los resultados de todos estos ensayos se recopilan a continuación en una serie de tablas resumen.

4.6 ESALs

El cálculo de los ejes equivalentes acumulados (ESALs) constituye una etapa fundamental en el diseño estructural de pavimentos. Según Barreto et al., los ESALs representan la suma ponderada de las cargas de todos los vehículos que circularán por la vía, expresadas en función del daño equivalente que produce un eje estándar de 8.2 toneladas.

4.6.1. Carga estimada por eje

Para la determinación de la carga estimada por eje, se recurrió a la clasificación vehicular establecida en la Norma Ecuatoriana Vial NEVI-12 la cual proporciona una tabla técnica (Anexo 4), con los tipos de vehículos y sus configuraciones de ejes, contemplando desde unidades livianas como motocicletas y automóviles, hasta camiones tipo 3S3, que corresponde a un tracto camión de 3 ejes y semirremolque de 3 ejes. Esta clasificación permite asociar a cada tipo vehicular una carga típica por eje, información esencial para el posterior cálculo de los ejes equivalentes, ya que define el impacto relativo que cada vehículo genera sobre la estructura del pavimento durante su vida útil.

4.6.2. Factor equivalencia de carga

Una vez establecida la carga estimada por eje, se procede al cálculo del factor de equivalencia de carga, el cual permite expresar el daño que cada tipo de eje produce sobre el pavimento en relación con un eje estándar de 8.2 toneladas. Para ello, se hace uso de la Tabla 15, extraída de la guía para el diseño de estructuras de pavimento de la AASHTO 1993, que recoge las fórmulas correspondientes para distintos tipos de configuración de ejes, considerando tanto el número de ruedas como el tipo de distribución de carga (simple, doble, tándem o trídem).

4.6.3. Porcentaie de vehículos

Para efectos del dimensionamiento estructural del pavimento, se ha considerado únicamente el porcentaje correspondiente a vehículos pesados, excluyendo a los vehículos livianos, debido a que estos no generan esfuerzos significativos que

34

comprometan la capacidad estructural de la vía. Esta exclusión es coherente con los lineamientos de diseño establecidos por la AASHTO 1993 y por la Norma Ecuatoriana Vial NEVI-12, donde se reconoce que el aporte al deterioro del pavimento por parte de

vehículos livianos es marginal en comparación con el impacto acumulado de vehículos pesados (Ministerio de Transporte y Obras públicas del Ecuador, 2013). En este sentido, se ha calculado el porcentaje relativo de cada tipo de vehículo de carga con base en el TPDA asignado para el año 2025, tal como se muestra en la tabla 16.

4.6.4. Factor camión

El cálculo del factor camión se obtiene multiplicando el factor de equivalencia de carga, determinado a partir de la (Tabla 15), por el porcentaje relativo de cada tipo de vehículo de carga en el tráfico total (Tabla 16). Matemáticamente, se expresa así:

Factor camión = Factor de equivalencia de carga * % de vehículos

Tf = pi * fi

Este procedimiento permite convertir cada tipo de vehículo en una contribución ponderada al desgaste del pavimento, considerando tanto su impacto individual como su frecuencia en el flujo vehicular.

4.6.5. Número de ESALs

A continuación, se presenta una tabla resumen en la que se consolidan los principales resultados del análisis del tránsito para efectos del diseño estructural del pavimento donde, finalmente, se calcula el número de ejes equivalentes (ESALs), calculado como el producto del TPDA por el respectivo factor camión.

Según los factores de equivalencia de carga por cada tipo de ejes planteados por la AASHTO se establece que el número de ejes equivalentes de 8.2 ton o N° de ESALs es de 127.25 los cuales sirven para la proyección para el periodo de diseño que son 20 años. 4.6.6. ESALs para el período de diseño

Para determinar número de ejes equivalentes para el periodo de diseño se empleó la siguiente ecuación que sigue la Metodología AASTHO 93 y NEVI-12:

```
35
```

```
ESAL's = ESAL's0 \times 365 \times Fd \times Fc \times (1+i)n-1 i )Donde: ESAL's0 = N\'umero\ ESALs\ inicial Fd = Factor\ de\ distribución\ direccional Fc = Factor\ carril i = Tasa\ de\ crecimiento
```

n = número de años

En este caso, se adoptó un factor de distribución direccional (Fd) de 0.5, ya que la vía evaluada corresponde a una carretera de doble sentido de circulación, lo cual implica que se asume una distribución simétrica del tránsito entre ambos sentidos. Asimismo, se utilizó un factor de carril (Fc) de 1.0, al tratarse de una vía rural con un solo carril por sentido, donde se espera que el 100% del tránsito pesado circule por dicho carril. Estos valores se encuentran recogidos en la Tabla 18.

Aplicando la formula se tiene:

```
ESAL's = 127.25 × 365 × 0.5 × 1 × (
(1 + 0.05)20 - 1
```

 $ESAL's = 7.68 \times 105$

De manera análoga también podemos seguir el procedimiento descrito en la NEVI-12 volumen 2B para la transformación del tráfico a un eje equivalente de 120 kN (12 ton), encontrando un número de ejes equivalente a 5.68 × 10⁵, valor que guarda concordancia con la categorización establecida en la Norma Ecuatoriana Vial NEVI-12, específicamente en la tabla 19. De acuerdo con dicha tabla, este valor ubica la vía dentro de la categoría T3 - Tráfico Medio Bajo. Este procedimiento se pude observar en el Anexo 6.

Np = número de vehículos pesados al final del período de diseño = 234 veh/dia

4.7 CBR de diseño

El ensayo de C.B.R mide la

scielo.sld.cu | Análisis comparativo de ejes equivalentes obtenidos mediante método aashto 93 y los proporcionados por pesaje en balanza fija de vehículos

resistencia al corte de un suelo bajo condiciones de humedad

y densidad controladas. La elección del valor del C.B.R. para el diseño de la estructura

36

depende del volumen de tráfico que soportara la vía durante su vida útil el mismo que debe ser cuidadosamente calculado y proyectado.

En este proyecto de titulación los métodos empleados para comparar los valores de diseño de CBR fueron los recomendados por el Instituto del Asfalto. Mora L. et al. (2020) menciona que el 60, 75 u 87,5% de los valores individuales de CBR sean iguales o superiores al valor de diseño de CBR, dependiendo del tráfico previsto que circulará sobre el pavimento. Los percentiles para determinar el valor del CBR de diseño según el criterio del Instituto de Asfalto se muestran en la siguiente tabla:

En el presente trabajo de titulación se ha determinado un ESALs de 7.68x105 por lo tanto el percentil corresponde al 75%

Con estos los valores mostrados en la tabla 23 se construye una gráfica con la cual se podrá obtener la ecuación característica que permitirá la determinación del CBR de diseño.

A la hora de establecer la curva de frecuencias hay que tener en cuenta el valor de R2, ya que un valor más alto de este representa un menor error y mayor grado de confianza (en este trabaio se seleccionó una curva de interpolación potencial)

A partir de la ecuación característica de la curva de frecuencia es posible determinar el valor del CBR de diseño:

y = 1.6717x - 0.465

0.75 = 1.6717x - 0.465

x = 5.61

Como resultado de los ensayos de laboratorio realizados se obtuvo un valor de CBR de diseño igual a 5.61%. Este valor permite clasificar a la subrasante como "subrasante pobre", de acuerdo con la clasificación técnica presentada en la Tabla 31, que categoriza el comportamiento mecánico del suelo en función del rango de CBR. Esta clasificación implica que el suelo natural posee una baja capacidad portante, por lo que requiere un diseño estructural que considere dicha debilidad, ya sea mediante el aumento del espesor

4.8 Diseño de pavimento flexible

etapa del diseño

Esta condición también influye directamente en la selección del tipo de pavimento, siendo el pavimento flexible la alternativa más adecuada para este tipo de subrasantes.

Para el dimensionamiento estructural del pavimento flexible en el tramo de estudio, se ha aplicado el método propuesto por la AASHTO en la Guía para el Diseño Estructural de Pavimentos para Carreteras (1993), este método tiene un enfoque racional por considerar variables clave como el tránsito proyectado, las propiedades del suelo de subrasante, las condiciones climáticas y el nivel de servicio deseado. Este método permite determinar los espesores adecuados de cada capa del pavimento: subbase, base y carpeta de rodadura. A continuación, se muestra el cálculo de las diversas variables que intervienen en esta

4.8.1. Determinación de parámetros de confiabilidad

El nivel de confiabilidad representa el grado de seguridad incorporado en el proceso de diseño, con el objetivo de asegurar que la estructura del pavimento cumpla con su desempeño esperado durante todo el período de análisis. (AASHTO, 1993)

A partir del análisis del Tránsito Promedio Diario Anual (TPDA), se determinó que la vía objeto de estudio corresponde a una vía colectora. En función de esta clasificación y siguiendo los lineamientos establecidos en la Tabla 24, se adoptó un nivel de confiabilidad del 90 %, valor recomendado para vías interurbanas.

Con el valor de confiabilidad adoptado en el diseño se procedió a determinar el valor del factor de desviación normal estándar (ZR), necesario para representar estadísticamente el nivel de certeza asociado al desempeño estructural esperado del pavimento. De acuerdo con la Tabla 25, para un nivel de confiabilidad del 90% le corresponde un ZR de –1.282. Se procede a establecer el valor del error estándar combinado (So), el autor Higuera (2011) menciona que esta variable refleja la dispersión total esperada en el diseño estructural, considerando las incertidumbres asociadas a las condiciones del suelo, el tránsito y los procesos constructivos. Para proyectos de pavimento flexible en construcciones nuevas, se recomienda un rango de So entre 0.40 y 0.50. En este caso, se

38

seleccionó un valor de 0.45, al considerar un nivel de variabilidad intermedio, propio de entornos rurales donde los materiales y condiciones de ejecución presentan cierto grado de incertidumbre.

4.8.2. Determinación del índice de servicio

El índice de serviciabilidad (Serviceability Index) es un parámetro utilizado en el método AASHTO 1993 para representar el nivel funcional o la calidad de servicio que ofrece una vía al usuario, en términos de confort, seguridad y condiciones de rodadura. Este índice se expresa en una escala del 0 al 5, donde 5 representa una condición excelente (pavimento nuevo) y 0 un estado completamente deteriorado e intransitable.

El diseño estructural del pavimento se basa en la pérdida de serviciabilidad admisible a lo largo de su vida útil, la cual se define como la diferencia entre dos valores:

- Serviciabilidad inicial (Po): corresponde al estado del pavimento recién construido. El método AASHTO 1993 recomienda un valor típico de Po = 4.2 para pavimentos flexibles y Po = 4.5 para pavimentos rígidos, aunque este puede variar según la calidad de construcción.
- Serviciabilidad final (Pt): representa el límite inferior aceptable de condiciones funcionales antes de requerir una rehabilitación o reconstrucción. Este valor depende del tipo de vía; para carreteras rurales o colectoras, suele adoptarse un Pt entre 2.0 y 2.5.

La diferencia entre estos valores define la pérdida de serviciabilidad admisible:

 $\Delta PSI = P0 - Pf$

 $\Delta PSI = 4.2 - 2 = 2.2$

Este valor es un componente fundamental de la ecuación de diseño AASHTO 93 y condiciona la capacidad estructural requerida para que el pavimento conserve un nivel de servicio aceptable durante todo su período de diseño.

39

4.8.3. Módulo resiliente de la subrasante

El módulo resiliente de la subrasante puede ser determinado a partir de correlaciones que han establecido varios autores y con la práctica y el tiempo han sido aceptadas como validas y usadas también en la metodología ASSHTO 93:

Para el cálculo del módulo resiliente de la subrasante se empleó la formula elaborada por Heukelomn y Foster en 1960, esta fórmula es empleada cuando se cumple la siguiente condición:

 $\P_{\mu} \sim 7.2\%$

?€?Ÿ(?¿?□/?□?¢?™?"2) = 1500 (?¶?µ?...%) = 1500 * 5.61 = 8408 ?□? ?-

4.8.4. Material para base y sub-base granular

Conforme a lo establecido por el Ministerio de Obras Públicas y Comunicaciones (2002) en el documento "Especificaciones Técnicas Generales para Construcción de Carreteras", donde se menciona que los materiales destinados a la conformación de la sub-base y base granular deben cumplir con ciertos criterios técnicos que aseguren un adecuado comportamiento estructural dentro del paquete del pavimento, se establece los siguientes requerimientos mínimos para los materiales con los que se estructurará el pavimento de este trabajo.

En el caso de la sub-base, el documento establece que los agregados empleados deberán tener un coeficiente de desgaste máximo del 50%, determinado mediante el ensayo de abrasión de Los Ángeles. Asimismo, la fracción que pasa el tamiz N° 40 debe presentar un índice de plasticidad inferior a 6 y un límite líquido menor de 25. Finalmente, se especifica que la capacidad de soporte de este estrato debe ser igual o superior a un CBR del 30%.

Respecto a la capa de base, las especificaciones técnicas exigen que el límite líquido de

la fracción que pasa el tamiz N° 40 no supere el 25% y que el índice de plasticidad no exceda el 6%. Además, el porcentaje de desgaste por abrasión de los agregados debe ser menor al 40%, y el CBR mínimo permitido corresponde al 80%.

40

En coherencia con estas exigencias, por cuestiones de distancia al proyecto y con el fin de minimizar costos de transporte de materiales, en este proyecto se ha optado por recurrir al material extraído de la cantera Beltrán la cual se ubica en el sector La Avanzada en el cantón Santa Rosa provincia de El Oro para su uso como base y sub-base. Las características de estos materiales se muestran a continuación.

4.8.5. Módulo resiliente MR y el coeficiente estructural a la base y la sub-base

Con los valores de CBR = 81.6% para la base y CBR = 67.58% para la Base, hacemos

uso de los monogramas dispuestos por la guía para el diseño de estructuras de pavimento

de la AASHTO 1993 para obtener el MR respectivo y luego calcular el coeficiente

estructural.

Los coeficientes se calculan con las siguientes ecuaciones:

- Para la base

?Ž2 = 0.249 * log(?,2) - 0.977

Siendo E2 el módulo resiliente respectivo.

- Para la sub-base

?Ž3 = 0.227 * log(?,3) - 0.839

Siendo E3 el módulo resiliente respectivo.

Una vez aplicadas las ecuaciones se procede a mostrar el resumen los resultados en la tabla 36:

4.8.6. Módulo resiliente de la mezcla asfáltica (E1) y coeficiente de la capa asfáltica (a1)

Para la estimación del módulo resiliente de la mezcla asfáltica (E1), se recurrió a un

gráfico que relaciona dicho parámetro con la temperatura del pavimento y la frecuencia

de carga aplicada, conforme a lo establecido en la metodología AASHTO 93.

La temperatura de la capa asfáltica se calculó mediante esta ecuación:

41

?‡? = (-0.0093 * ?‡?Ž 2 + 1.569 * ?‡?Ž - 1.578)(-0.084 * In h? + 1.55)

Donde:

?‡?Ž → ?‡?'?š?□?'?Ÿ?Ž?¡?¢?Ÿ?Ž ?š?'?'?-?Ž ?'?'?™ á?-?Ÿ?'

 $h? \ \rightarrow \ ?,?\ ?\square?'?\ ?\infty?\ ?'?'\ ?^m?\ ?\square?\ ?\ ?\ ?\ ?\ ?\ ?'\ ?''\ a?^m?\ ;?-?\square?\ Z$

La temperatura media del aire se asumió de 23.5 C° y el espesor de la capa asfáltica se tomará de 75 mm, este último es el espesor mínimo basados en los requerimientos de la normativa en base al ESALs calculado previamente (Tabla 37). Aplicando la fórmula se tiene lo siguiente:

?‡? = (-0.0093 * 23.52 + 1.569 * 23.5 - 1.578)(-0.084 * In 75 + 1.55)

?‡? = 36 °?¶

La frecuencia se calcula según la ecuación:

?" =

2?‹

donde:

?" → frecuencia (Hz)

 $?£ \rightarrow ?£?'?^{\text{IM}}?@?@?-?'?\check{Z}?'?\check{S}?'?'-?\check{Z}?'?'?-?\ddot{Y}?@?-?\ddot{Y}?@?c?^{\text{IM}}?\check{Z}?@?-\acute{O}?$

Se utilizó una velocidad de circulación de 78 km/h, que equivale a aproximadamente 21.67 m/s. Al aplicar la fórmula, se obtuvo una frecuencia de aproximadamente 12 Hz, la cual excede los valores representados en el gráfico (máximo 10 Hz), pero permite realizar una estimación por extrapolación en la curva correspondiente a 10 Hz para una temperatura determinada, normalmente cercana a 35 °C.

Una vez obtenida la frecuencia de carga aplicada y la temperatura efectiva de la capa asfáltica, ingresamos al gráfico para obtener el módulo resiliente de la capa asfáltica:

Trazando las líneas correspondientes en el gráfico proporcionado por la AASHTO 93 se tiene que:

?¸1 = 6000 ?€?f?Ž = 870227 ?□? ?-

42

Con este valor aplicamos la ecuación para el cálculo del coeficiente de esta misma capa:

?Ž1 = 0.184 * ln(?,1) - 1.9547

?Ž1 = 0.184 * In(870227) - 1.9547

?Ž1 = 0.5618

4.8.7. Determinación del coeficiente de drenaje

Con el propósito de estimar de forma adecuada el coeficiente de drenaje para las capas granulares del pavimento, se llevó a cabo un análisis climático basado en los anuarios proporcionados por el Instituto Nacional de Meteorología e Hidrología (INAMHI). A partir del mapa de estaciones meteorológicas, se seleccionaron cuatro estaciones cercanas al área de estudio: M0292, M040, M0185 y M0481. Para cada estación se identificó el año con mayor registro de precipitaciones, del cual se obtuvo el número total de días con lluvia. Con esta información, se calculó el porcentaje de días lluviosos en el año dividiendo dicho número para 365.

Los resultados obtenidos se presentan en la Tabla 37, donde se observa que el porcentaje promedio de días de lluvia al año asciende al 58%, con un total promedio de 213 días lluviosos anuales.

El porcentaje de días de lluvia nos indica que la estructura del pavimento estará expuesta a condiciones de humedad próxima a la saturación durante más del 25% del tiempo. En este contexto, y según lo dispuesto en la Tabla 38 de coeficientes de drenaje, se considera que el sistema presenta una condición de drenaje regular, lo que corresponde a un coeficiente de drenaje de 0.80 para el caso de exposición prolongada a la humedad.

De esta manera se obtienen los coeficientes de drenaje:

• m1 = 1 (recomendado para concreto asfaltico)

• m2 = m3 = 0.8 (tabla)

de la estructura del pavimento de este proyecto:

43

```
4.8.8. Número estructural requerido por la capa asfáltica
log(?Š18) = ?\Box?\ddot{Y} * ?†0 + 9,36 * log(?†?\Box1 + 1) - 0,20 + [
log (
Δ?f?†?¼
4,2 - 1,50
0,40 + (
1094
(?†?[]1 + 1)5,19)
] + 2,32
* log(?€?Ÿ) - 8,07
?†?[]1 = 1.965
4.8.9. Espesor de la capa asfáltica
h1 =
?†?[]1
?Ž1
1.965
0.5618
= 3.5 ?□?¢?™?"
h1 = 3.5 ?□?¢?™?"
* = ?\check{Z}1 * h1 = 0.5618 * 3.5 = 1.966
4.8.10. Número estructural requerido por la base granular
log(?Š18) = ?\Box?\ddot{Y} * ?†0 + 9,36 * log(?†?\Box2 + 1) - 0,20 + [
log (
Δ?f?†?¼
4,2 - 1,50
0,40 + (
1094
(?†?02 + 1)5,19)
] + 2,32
* log(?€?Ÿ) - 8,07
?†?02 = 2.311
4.8.11. Espesor de la base granular
h2 =
?†?02 - ?†?01
?Ž2 * ?š2
```

2.311 - 1.966

```
0.13 * 0.8
= 3.3 ?□?¢?™?"
Se adopta el espesor mínimo recomendado en la tabla 38 \rightarrow h2 = 6 ? \square? C?^{TM}?''
* = ?\check{Z}2 * ?\check{S}2 * h2 + ?\check{T}\check{D}\check{U}1
* = 0.13 * 0.8 * 3.5 + 1.966 = 2.6
BASE
SUB-BASE
44
4.8.12. Número estructural requerido por la sub-base granular
?™?œ?"(?Š18) = ?\Box?\ddot{Y} * ?†0 + 9,36 * ?™?œ?"(?†?\Box2 + 1) − 0,20 + [
?™?œ?" (
Δ?f?†?¼
4,2 - 1,50
0,40 + (
1094
(?†?[]1 + 1)5,19)
+ 2,32 * ?™?œ?"(?€?Ÿ) - 8,07
?†?03 = 3.068
4.8.13. Espesor de la sub-base granular
h3 =
?†?03 - ?†?02
?Ž3 * ?š3
3.068 - 2.6
0.13 * 0.8
= 4.5 ?□?¢?™?"
Se adopta el espesor mínimo recomendado en la tabla 38 \rightarrow h3 = 6 ? \square? ¢? ^{TM}?"
Con los resultados obtenidos se puede realizar la siguiente comprobación:
4.8.14. Comprobación de los números estructurales mediante software
Como método de verificación para el cálculo de los números estructurales y los espesores
de capa se ha hecho uso del software denominado "Ecuación AASHTO 93":
4.9 Diseño geométrico
Para la definición de los parámetros geométricos de la vía rural objeto de estudio, se
aplicaron
             Documento de otro usuario

Viene de de otro grupo
  ₾9
```

los lineamientos establecidos por el Ministerio de Transporte y Obras

Públicas

(MTOP), específicamente los contenidos en la Tabla 42 de clasificación de vías según el

Tránsito Promedio Diario Anual (TPDA). Esta normativa establece los rangos

recomendables y absolutos para el diseño vial, abarcando tanto aspectos del alineamiento

horizontal como vertical. Entre los parámetros considerados se encuentran: la velocidad de diseño, la velocidad de circulación, la distancia de visibilidad de parada y de rebase, el coeficiente de fricción lateral, el radio mínimo de curva, el grado de curvatura, el peralte, la tangente intermedia mínima, el sobreancho, las curvas verticales cóncavas y convexas, el gradiente máximo y mínimo, el ancho de carril, la pendiente transversal o bombeo, la inclinación de taludes, así como los anchos mínimos y recomendables de SUBRASANTE

45

calzada. Todos estos elementos fueron definidos en concordancia con la categoría funcional de la vía, determinada a partir del TPDA proyectado.

Según los cálculos de tránsito previamente realizados, el TPDA proyectado para la vía es de 722 vehículos/día, valor que la ubica dentro de la Clase III, correspondiente a vías con flujos entre 300-1000 vehículos por día. Para esta clase, la normativa establece una velocidad de diseño recomendable de 90 km/h, sin embargo, se decidió adoptar una velocidad más conservadora de 60 km/h. Esta decisión se fundamenta en las condiciones particulares de la vía, la cual es de una calzada con solo un carril por sentido, lo que incrementa los riesgos de operación a velocidades elevadas. Además, dado el uso agrícola predominante en la zona, es común la circulación de vehículos pesados y maquinaria de gran tamaño, lo que justifica aún más la necesidad de reducir la velocidad de diseño para garantizar maniobrabilidad, seguridad y adecuación al entorno funcional. En caso de requerirse una velocidad de diseño de 90 km/h, lo óptimo sería considerar el aumento del número de carriles y, por consiguiente, una modificación en la sección tipo, a fin de mejorar las condiciones de maniobrabilidad, seguridad y fluidez vehicular que permitan operar de forma segura a mayores velocidades.

Tras la implementación de la metodología de diseño geométrico, establecida en las

Normas

Documento de otro usuario Viene de de otro grupo

de Diseño Geométrico de Carreteras del Ministerio de Transporte y Obras

Públicas (2003), se obtuvieron los siguientes resultados:

Como se aprecia en la ilustración 18 La sección transversal propuesta considera una calzada de 8.60 metros de ancho, que incluye dos carriles de 3.65 m cada uno (uno en cada sentido) y cunetas laterales de 0.65 m, configurados con una pendiente transversal (bombeo) de 2% hacia ambos lados del eje, lo cual asegura un adecuado drenaje superficial y seguridad en la operación del camino, incluso en zonas de visibilidad limitada o en curvas.

Se ha seleccionado una cuneta de sección triangular con revestimiento de hormigón. Esta tipología ha sido elegida por su eficiencia hidráulica, ya que permite el escurrimiento de caudales con velocidades relativamente altas sin comprometer la estabilidad del cauce, minimizando así el riesgo de erosión del lecho y los taludes. El uso de revestimiento rígido, como el hormigón, garantiza durabilidad, reduce los requerimientos de

mantenimiento y mejora el comportamiento estructural ante solicitaciones hidráulicas variables. A continuación, se detalla la geometría de la cuneta diseñada para el sistema de drenaje longitudinal del proyecto vial.

La elaboración de los planos y el trazado geométrico de la vía en el software AutoCAD Civil 3D se realizó a partir de los datos obtenidos en el levantamiento topográfico del terreno. Esta información, compuesta por coordenadas, cotas y detalles del relieve, fue procesada para generar un modelo digital del terreno (MDT), que permitió definir con precisión el alineamiento horizontal y vertical de la vía. A partir de este modelo, se desarrollaron perfiles longitudinales, secciones transversales y el diseño de la rasante, los cuales sirvieron como base para la elaboración de los planos constructivos y la obtención de las cantidades de obra.

A continuación, se presentan los planos técnicos elaborados, en los cuales se refleja la aplicación detallada de los parámetros geométricos definidos, cumpliendo con los criterios de funcionalidad, seguridad y adaptabilidad para una vía rural de doble sentido con un volumen de tránsito moderado, además, también se presenta los volúmenes de movimiento de tierras correspondientes en el Anexo 7.

5. CONCLUSIONES Y RECOMENDACIONES

Conclusiones

· La revisión bibliográfica y normativa permitió identificar los parámetros técnicos más relevantes para el diseño geométrico de vías rurales, tomando como referencia principal

(<u>11</u>

Documento de otro usuario Viene de de otro grupo

los lineamientos establecidos por el Ministerio de Transporte y Obras

Públicas (MTOP) y la Norma

Ecuatoriana Vial NEVI-12. Asimismo, este análisis

permitió determinar que la metodología más adecuada para el diseño estructural del pavimento en este tipo de proyectos corresponde al método AASHTO 93, dado su enfoque integral en la evaluación del tránsito, características del suelo y niveles de serviciabilidad esperados

· A través de los estudios técnicos realizados, entre ellos el levantamiento topográfico, los ensayos de laboratorio del suelo y los aforos vehiculares, se diagnosticó de manera integral el estado actual del tramo Al Quemado (0+000 a 3+187). El levantamiento permitió identificar deficiencias geométricas, como pendientes inadecuadas y curvas

47

con radios menores a los mínimos establecidos por la normativa, lo cual compromete la funcionalidad y seguridad vial, especialmente en temporada invernal. Mediante el aforo vehicular se determinó un TPDA de 722 vehículos/día, proyectado a 20 años, obteniendo una carga acumulada de 7.68 × 10⁵ ESALs, que representa la demanda estructural que la vía deberá soportar. Por su parte, los ensayos de laboratorio evidenciaron que la subrasante está compuesta principalmente por suelos de tipo arcilloso (ML) y arenoso (SM-SP), con una capacidad portante limitada, reflejada en un CBR promedio de 5.61 %, clasificándola como "muy mala" según los

criterios de la NEVI-12. Esta descompensación entre la demanda futura y la resistencia actual del suelo justifica la necesidad de una estructura de pavimento que garantice un comportamiento funcional y duradero a lo largo del periodo de diseño.

• En respuesta a las deficiencias identificadas durante la evaluación técnica, se planteó una solución integral que abarca tanto el diseño estructural como el geométrico del tramo vial. En lo estructural, se optó por un pavimento flexible, en función de las características del terreno y del tránsito proyectado. Esta elección se sustenta en el bajocomportamiento mecánico de la subrasante, con un CBR promedio de 5.61 %, lo que hace más recomendable el uso de estructuras flexibles por su capacidad de adaptación a suelos débiles. Además, el volumen de tránsito identificado no justifica una inversión en pavimentos rígidos. Dado que se trata de una vía rural de bajo volumen con restricciones presupuestarias y necesidad de mantenimiento progresivo, el pavimento flexible constituye una alternativa eficiente, alineada con las recomendaciones de la Norma NEVI-12.

El paquete estructural propuesto está conformado por 3.5 pulgadas (8.89 cm) de carpeta asfáltica, 15.24 cm de base granular y 15.24 cm de subbase, asegurando la capacidad portante requerida y una vida útil acorde al horizonte de diseño. Desde el punto de vista geométrico, el nuevo trazado considera una velocidad de diseño de 60 km/h, coherente con la clasificación funcional de la vía y las condiciones topográficas del entorno. Se corrigieron las pendientes excesivas y se rediseñaron las curvas horizontales, incorporando radios mínimos de hasta 135 m, lo que mejora significativamente la seguridad vial y la comodidad de circulación para los usuarios.

48

- Se logró integrar adecuadamente los resultados de campo con herramientas tecnológicas como Autocad Civil 3D, lo cual facilitó la obtención precisa de perfiles, secciones y cubicaciones. Esta sinergia entre lo técnico y lo digital permitió desarrollar una propuesta integral de trazado geométrico que mejora significativamente las condiciones de transitabilidad y promueve el desarrollo productivo del sector rural.
- Finalmente, el proyecto no solo responde a necesidades técnicas, sino también sociales y económicas. Al mejorar las condiciones de la vía Al Quemado, se favorece la conectividad rural, se optimiza el transporte de productos agrícolas y se fortalece el vínculo entre la zona productiva y la cabecera cantonal de Santa Rosa.

Recomendaciones

- Complementar el diseño con un estudio hidrológico detallado, debido a la presencia de pequeños cauces que, en temporada invernal, generan escorrentías que han afectado históricamente la vía. Este análisis permitirá definir obras de drenaje adecuadas que prevengan erosiones y socavamientos.
- Realizar una evaluación de la señalización vertical y horizontal existente, así como una propuesta de señalización completa acorde con la NEVI-12, a fin de garantizar la seguridad vial en condiciones de visibilidad adversa y durante el tránsito nocturno.

- Incorporar estudios ambientales y simulaciones de tráfico en futuras investigaciones, con el fin de evaluar los posibles impactos sobre el entorno y validar los escenarios de crecimiento vehicular mediante modelos de simulación, lo que reforzaría la planificación a largo plazo.
- Elaborar un presupuesto referencial y un cronograma de ejecución de obra, con base en los volúmenes de movimiento de tierra y las cantidades de obra obtenidas, para facilitar la toma de decisiones por parte de las autoridades competentes en caso de implementación del proyecto.
- Diseñar un sistema de monitoreo y evaluación del desempeño vial, basado en indicadores clave como deterioro superficial, tiempos de viaje y nivel de servicio, que

permita realizar ajustes técnicos futuros y planificar mantenimientos preventivos de manera oportuna.

49

• Gestionar un mayor respaldo institucional para trabajos futuros, especialmente en zonas rurales, donde el levantamiento de información en campo puede verse limitado por la falta de autorización de propietarios privados. La participación de autoridades locales facilitaría el acceso a predios y permitiría obtener fajas topográficas más amplias y precisas para posibles ampliaciones de vía.

CLÁUSULA DE CESIÓN DE DERECHO DE PUBLICACIÓN EN EL REPOSITORIO DIGITAL INSTITUCIONAL

El que suscribe, TINIZARAY LOPEZ DAVIS ARIEL, en calidad de autor del siguiente trabajo escrito titulado Propuesta técnica de rediseño vial para el tramo rural de la vía Al Quemado – Santa Rosa abscisa 0+000 hasta 3+187 a partir del análisis topográfico, geotécnico y de tránsito., otorga a la Universidad Técnica de Machala, de forma gratuita y no exclusiva, los derechos de reproducción, distribución y comunicación pública de la obra, que constituye un trabajo de autoría propia, sobre la cual tiene potestad para otorgar los derechos contenidos en esta licencia.

El autor declara que el contenido que se publicará es de carácter académico y se enmarca en las dispociones definidas por la Universidad Técnica de Machala.

Se autoriza a transformar la obra, únicamente cuando sea necesario, y a realizar las adaptaciones pertinentes para permitir su preservación, distribución y publicación en el Repositorio Digital Institucional de la Universidad Técnica de Machala.

El autor como garante de la autoría de la obra y en relación a la misma, declara que la universidad se encuentra libre de todo tipo de responsabilidad sobre el contenido de la obra y que asume la responsabilidad frente a cualquier reclamo o demanda por parte de terceros de manera exclusiva.

Aceptando esta licencia, se cede a la Universidad Técnica de Machala el derecho exclusivo de archivar, reproducir, convertir, comunicar y/o distribuir la obra mundialmente en formato electrónico y digital a través de su Repositorio Digital Institucional, siempre y cuando no se lo haga para obtener beneficio económico.

TINIZARAY LOPEZ DAVIS ARIEL

0706326881

DEDICATORIA

Dedico este trabajo a mis padres, por ser el pilar fundamental en cada etapa de mi vida, por su esfuerzo silencioso, sus consejos sinceros y por enseñarme a luchar por lo que quiero. A mi familia, por acompañarme con paciencia y aliento en los momentos más difíciles. A Dios, por darme salud, fuerza y claridad cuando más lo necesité.

Agradezco también a quienes, de una u otra manera, formaron parte de este proceso académico y personal. A los docentes, compañeros y a cada persona que, con su apoyo o palabra, me ayudó a seguir adelante.

Y, por último, pero no menos importante, me dedico este trabajo a mí mismo, por todo el sacrificio y determinación que demostré lo largo de todos estos años, noches sin dormir, extenuantes jornadas de estudio e incontables horas tratando hacer lo mejor posible. Este logro no es solo una meta cumplida, sino el reflejo de la constancia, la dedicación y las ganas de salir adelante a pesar de las dificultades.

Davis Ariel Tinizaray López

AGRADECIMIENTO

Agradezco primeramente a Dios, por haberme permitido llegar hasta esta etapa tan importante de mi vida y brindarme fortaleza en los momentos más exigentes del camino. A mis padres, Alexandra Gina López Freire y José Luis Tinizaray Vega, por su apoyo incondicional, sus sacrificios constantes y por ser siempre mi mayor fuente de inspiración. A mis hermanas, Alison y Antonella, a mi abuela, María Freire y familia en general, por estar presentes cuando más lo necesité, con palabras de aliento y gestos sinceros.

A mi tutor de titulación, Ing Erwin Javier Oyola Estrada, por su guía técnica, paciencia y compromiso durante el desarrollo de este proyecto. Agradezco también a los docentes de la carrera de Ingeniería Civil de la Universidad Técnica de Machala, quienes compartieron sus conocimientos y valores a lo largo de toda mi formación.

Expreso mi sincero agradecimiento a la Prefectura de El Oro, en especial al Ing. Eduardo Montesdeoca y a la Ing. Paola Batallas, por brindarme acceso a los laboratorios de suelos y pavimentos de la institución, permitiéndome utilizar los equipos e implementos necesarios para la ejecución de los ensayos requeridos en este trabajo, así como por la orientación y el apoyo brindado durante el proceso.

A mis amigos y compañeros de carrera, Abigail, Axel, Steven, Anthony, Freddy, Dayana, Madeleyne, José y Kevin, quienes compartieron conmigo largas jornadas de estudio, trabajo y aprendizajes mutuos. Su apoyo, compañía y colaboración marcaron una etapa que recordaré siempre con gratitud.

A la Srta. Katherin Granda, mi compañera de fórmula, quien ha sido una parte trascendental en toda esta loca aventura universitaria y sin la cual no hubiera podido llevarse a cabo este trabajo, gracias.

Finalmente, me agradezco a mí mismo por la constancia, la dedicación y la capacidad de no rendirme frente a los obstáculos. Culminar esta tesis representa más que un logro académico: es el resultado de un esfuerzo que va más allá de las aulas.

RESUMEN

Este proyecto surge ante la evidente necesidad de mejorar las condiciones de una vía rural ubicada en el sector Al Quemado, en el cantón Santa Rosa, cuyo estado actual, marcado por deficiencias geométricas, escasa capacidad estructural y deterioro progresivo, limita la movilidad, especialmente del transporte agrícola, y afecta el desarrollo socioeconómico de la zona.

El objetivo principal fue diseñar una alternativa de trazado vial que se adapte a las condiciones reales del terreno y al volumen de tránsito existente, garantizando mayor seguridad, funcionalidad y durabilidad. Para ello, se llevaron a cabo estudios técnicos como el levantamiento topográfico, aforos vehiculares y ensayos de laboratorio del suelo, que permitieron caracterizar con precisión la situación actual y establecer los parámetros de diseño. A partir de esta información, se propuso un rediseño geométrico con una velocidad de diseño adecuada, corrección de pendientes y radios, así como una estructura de pavimento flexible adaptada a la capacidad de soporte del suelo y a la demanda proyectada.

El desarrollo del proyecto se apoyó en criterios normativos (NEVI-12), el método AASHTO 93 y el uso de herramientas como AutoCAD Civil 3D, permitiendo una planificación técnica precisa. En conjunto, esta propuesta busca mejorar la conectividad de la zona, facilitar el transporte de productos agrícolas y contribuir al bienestar de los habitantes del sector.

Palabras clave: vías rurales, diseño geométrico, pavimento flexible, levantamiento topográfico, movilidad agrícola, NEVI-12, AASHTO 93, Civil 3D.

ABSTRACT

This project arises from the evident need to improve the conditions of a rural road located

in the Al Quemado sector, in the canton of Santa Rosa, whose current state, marked by

geometric deficiencies, low structural capacity, and progressive deterioration, limits

mobility, particularly for agricultural transport, and affects the socioeconomic

development of the area.

The main objective was to design an alternative road layout adapted to the actual terrain

conditions and existing traffic volume, ensuring greater safety, functionality, and

durability. To achieve this, technical studies were conducted, including topographic

surveying, traffic counts, and laboratory tests on soil samples, which allowed for an

accurate characterization of the current conditions and the definition of design

parameters. Based on these results, a new geometric design was proposed with an

appropriate design speed, adjusted slopes and curves, as well as a flexible pavement

structure tailored to the bearing capacity of the subgrade and projected demand.

The project development followed national regulations (NEVI-12), the AASHTO 93

methodology, and used tools such as AutoCAD Civil 3D for precise planning. Altogether,

this proposal aims to improve the area's connectivity, facilitate the transport of

agricultural products, and contribute to the well-being of local residents.

Keywords: rural roads, geometric design, flexible pavement, topographic survey,

agricultural mobility, NEVI-12, AASHTO 93, Civil 3D.

4

CONTENIDO

			Pág.
DE	DICAT	ORIA	1
AG	RADE	CIMIENTO	2
RE	SUME	V	3
ΑB	STRAC	CT	4
CO	NTENI	DO	5
LIS	TA DE	TABLAS	9
		FIGURAS	
		ICCIÓN	
		a del tema	
•		de la problemática	
1.	CAPIT	ULO I: PLANTEAMIENTO DEL PROBLEMA	16
1.1	An	tecedentes	16
1.2	Des	scripción de la situación problemática (Causas y efectos)	20
1.3	For	mulación del problema (preguntas científicas)	21
1.4	Del	imitación del objeto de estudio	22
1.5	Jus	tificación	24
1.6	Ob	etivos	25
	1.6.1.	Objetivo General	25
	1.6.2.	Objetivos específicos	25
2.	CAPIT	ULO II: MARCO TEÓRICO	27
2.1	An	tecedentes contextuales	27
	2.1.1.	Macro	
	2.1.2.	Meso	
	2.1.2.		
2.2		tecedentes conceptuales	
2.3		tecedentes referenciales	

3.	CAPIT	ULO III: METODOLOGÍA	38
3.1	Mo	dalidad de la investigación	38
	3.1.1.	Tipo de investigación	38
3.2	Des	scripción de la población	38
3.3	Mé	todo teórico	39
	3.3.1.	Revisión bibliográfica	39
3.4	Mé	todo empírico	40
	3.4.1.	Reconocimiento del área de estudio	41
	3.4.2.	Levantamiento topográfico	41
	<i>3.4.3</i> .	Estudio del tránsito vehicular	41
	3.4.4.	Estudio de suelos	41
	3.4.5.	Análisis de la situación actual	42
	3.4.6.	Propuesta de trazado geométrico	42
	<i>3.4.7</i> .	Modelación y diseño digital	42
	<i>3.4.8.</i>	Análisis de resultados y conclusiones	42
4.	CAPIT	ULO IV: ANÁLISIS DE RESULTADOS	43
4.1	Cla	sificación preliminar de la vía	43
4.2	Lev	vantamiento topográfico y análisis preliminar del trazado	43
4.3	Afo	oro vehicular	44
	4.3.1.	Clasificación vehicular	46
4.4	Trá	fico Promedio Diario Anual	47
	4.4.1.	Tráfico promedio diario semanal	47
	4.4.2.	Tráfico promedio diario anual actual	48
	4.4.3.	Tráfico promedio diario anual asignado	49
	4.4.4.	Tráfico promedio diario anual proyectado al 2045	50
	4.4.5.	Clasificación de la vía de acuerdo con el tráfico proyectado	52
4.5	Est	udios de suelos	54
4.6	ESA	ALs	58
	4.6.1.	Carga estimada por eje	58
	4.6.2.	Factor equivalencia de carga	58
	4.6.3.	Porcentaje de vehículos	59
	4.6.4.	Factor camión	60

	4.6.5.	Número de ESALs	. 61
	4.6.6.	ESALs para el período de diseño	. 62
4.7	CBI	R de diseño	. 63
4.8	Dise	eño de pavimento flexible	. 66
	4.8.1.	Determinación de parámetros de confiabilidad	. 66
	4.8.2.	Determinación del índice de servicio	. 68
	4.8.3.	Módulo resiliente de la subrasante	. 69
	4.8.4.	Material para base y sub-base granular	. 70
	4.8.5.	Módulo resiliente MR y el coeficiente estructural a la base y la sub-base	71
	4.8.6.	Módulo resiliente de la mezcla asfáltica (E_l) y coeficiente de la capa	
		asfáltica (a ₁)	. 73
	4.8.7.	Determinación del coeficiente de drenaje	. 75
	4.8.8.	Número estructural requerido por la capa asfáltica	. 77
	4.8.9.	Espesor de la capa asfáltica	. 77
	4.8.10.	Número estructural requerido por la base granular	. 77
	4.8.11.	Espesor de la base granular	. 78
	4.8.12.	Número estructural requerido por la sub-base granular	. 78
	4.8.13.	Espesor de la sub-base granular	. 78
	4.8.14.	Comprobación de los números estructurales mediante software	. 79
4.9	Dise	eño geométrico	. 82
5.	CONCI	LUSIONES Y RECOMENDACIONES	. 88
		es	
		ciones	
BIE	BLIOGR	AFÍA	.91
AN	EXOS		. 96
An	exo 1: Ta	abla de registro de puntos topográficos	. 96
An	exo 2: Ta	ablas de registro de aforo vehicular	132
An		nsayos de granulometría, límites de consistencia y contenido de humedad	
An		nsayos de Proctor modificado	
An	exo 5: R	eportes de CBR obtenidos de la prensa marshal	159

Anexo 6: Tabla nacional de pesos y dimensiones posibles combinaciones	179
Anexo 7: Metrado de la vía	181
Anexo 8: Reporte de curvas verticales	185
Anexo 9: Alineamiento de curvas horizontales	190
Anexo 10: Evidencia fotográfica	196

LISTA DE TABLAS

Pág.
Tabla 1. Proyección de la población de la parroquia Santa Rosa
Tabla 2. Proyección poblacional rural y urbana de la parroquia Santa Rosa
Tabla 3. Distribución de la red vial cantonal
Tabla 4. Jerarquía de la red vial de El Oro
Tabla 5. Material de las vías de tercer orden
Tabla 6. Coordenadas de la vía de estudio
Tabla 7. Normas técnicas especializadas de la AASHTO
Tabla 8. Registro del conteo semanal
Tabla 9. Clasificación diaria vehicular
Tabla 10. Factores mensuales
Tabla 11. Factor diario por día
Tabla 12. Tasa de crecimiento según tipo de vehículo
Tabla 13. Resumen de los cálculos del TPDA proyectado
Tabla 14. Clasificación del tipo de vía en base a su función y su relación con el TPDA53
Tabla 15. Clasificación funcional de las vías en base al TPDA
Tabla 16. Resumen del material de la calicata 1
Tabla 17. Resumen del material de la calicata 2
Tabla 18. Resumen del material de la calicata 3
Tabla 19. Resumen del material de la calicata 4

Tabla 20. Resumen de resultados de ensayos en la calicata 1
Tabla 21. Resumen de resultados de ensayos en la calicata 2
Tabla 22. Resumen de resultados de ensayos en la calicata 3
Tabla 23. Resumen de resultados de ensayos en la calicata 4
Tabla 24. Relación de cargas por eje para determinar el Eje Equivalente para pavimentos flexibles
Tabla 25. Porcentaje de vehículos sin livianos
Tabla 26. Resumen de cálculos previos al ESALs proyectado
Tabla 27. Factores para el cálculo del ESALs
Tabla 28. Clasificación de tráfico por número acumulado de ejes equivalentes de 12 toneladas (120 kN)
Tabla 29. Percentiles para la selección del valor de CBR de diseño
Tabla 30. Percentiles del trabajo de titulación
Tabla 31. Categorización de la subrasante en base a su CBR
Tabla 32. Niveles de confiabilidad sugeridos según el tipo de carretera
Tabla 33. Desviación estándar (Zr)
Tabla 34. Error combinado (So)
Tabla 35. Valor de serviciabilidad final
Tabla 36. Resumen de los resultados de los ensayos en la Cantera "Beltrán"71
Tabla 37. Módulos resilientes y coeficientes estructurales de la base y sub-base 72
Tabla 38. Espesores mínimos de capa asfáltica y base granular
Tabla 39. Resumen de datos de las estaciones meteorológicas

Tabla 40. Coeficientes de drenaje	76
Tabla 41. Resumen de las variables para el diseño de pavimentos	76
Tabla 42. Valores de diseño recomendados para carreteras de dos carril	•
Tabla 43. Resumen de las variables usadas en el diseño	85

LISTA DE FIGURAS

Pág.
Ilustración 1. Árbol de Problemas
Ilustración 2. Red vial provincial del cantón Santa Rosa
Ilustración 3. Tramo de estudio (vía Al Quemado)
Ilustración 4. Estado actual de la vía en el tramo evaluado
Ilustración 5. Flujo vehicular diario por intervalos de tiempo
Ilustración 6. Clasificación vehicular
Ilustración 7. Curvas de frecuencias
Ilustración 8. Correlaciones CBR-Módulo resiliente de la subrasante
Ilustración 9. Ábacos para determinar el módulo resiliente de la base y sub-base 72
Ilustración 10. Gráfico del módulo resiliente de la capa asfáltica
Ilustración 11. Resumen del diseño de la estructura del pavimento
Ilustración 12. Verificación SN requerido vs SN dispuesto
Ilustración 13. Comprobación SN capa asfáltica
Ilustración 14. Comprobación SN base
Ilustración 15. Comprobación SN sub-base
Ilustración 16. Resumen de la comprobación del diseño de pavimentos
Ilustración 17. Resumen del informe obtenido del software
Ilustración 18. Sección transversal de la vía
Ilustración 19. Diseño de cuneta

Ilustración 20.	Equipo topográfico	196
Ilustración 21.	Levantamiento topográfico	196
Ilustración 22.	Conteo vehicular	197
Ilustración 23.	Elaboración de calicatas	197
Ilustración 24.	Calicata	198
Ilustración 25.	Extracción de muestras de suelo	198
Ilustración 26.	Preparación de muestras	199
Ilustración 27.	Tamizado a través del tamiz N°4	199
Ilustración 28.	Ensayo de CBR	200
Ilustración 29.	Incorporación de agua para CBR	200
Ilustración 30.	Ensayo Proctor	201
Ilustración 31.	Puesta de muestras en el horno	201
Ilustración 32.	Tamizado por lavado	202
Ilustración 33.	Uso de la tamizadora para granulometría	202
Ilustración 34.	Ensayo de límites de consistencia	203
Ilustración 35.	Muestras de límites de consistencia	203

INTRODUCCIÓN

Importancia del tema

La infraestructura vial constituye un pilar fundamental para el desarrollo de las comunidades rurales, ya que facilita la movilidad, mejora la accesibilidad a servicios básicos y promueve el crecimiento económico. En Ecuador, una parte significativa del territorio depende de vías de tercer orden, las cuales conectan zonas agrícolas y rurales con los principales centros urbanos. Sin embargo, muchas de estas carreteras presentan condiciones deficientes, lo que limita su funcionalidad y afecta negativamente la productividad y calidad de vida de sus habitantes.

El trazado geométrico de una vía influye directamente en su seguridad, eficiencia y durabilidad. Un diseño inadecuado puede generar problemas como inestabilidad estructural, tiempos de recorrido prolongados y riesgos para los usuarios. Por ello, evaluar y optimizar los trazados geométricos en vías rurales es una tarea prioritaria para garantizar una infraestructura vial eficiente y sostenible.

En el contexto de la provincia de El Oro, y en particular en el cantón Santa Rosa, la mejora del trazado de sus vías rurales resulta esencial para fortalecer la conectividad y dinamizar la actividad económica local. La producción agrícola y ganadera de la región depende en gran medida del transporte de insumos y productos terminados, por lo que contar con vías adecuadas no solo facilita la movilidad de los productores, sino que también reduce costos logísticos y fortalece el comercio regional.

Desde el ámbito de la ingeniería civil, el estudio de los trazados geométricos en carreteras rurales permite aplicar conocimientos técnicos en topografía, tránsito y diseño estructural, asegurando que las soluciones planteadas sean viables tanto desde el punto de vista funcional como económico. Así, el presente trabajo contribuye a la formulación de propuestas de mejora que optimicen la infraestructura vial y promuevan el desarrollo sostenible en la zona de estudio.

Actualidad de la problemática

A pesar de su relevancia estratégica, las vías rurales del cantón Santa Rosa presentan condiciones desfavorables que limitan su funcionalidad y seguridad. Estas deficiencias, derivadas de diseños geométricos inadecuados y un mantenimiento insuficiente, generan problemas como superficies de rodadura irregulares, mala conectividad y un aumento en los tiempos de recorrido. En particular, la vía Al Quemado, objeto de estudio de este trabajo, carece de un diseño técnico formal, ya que fue originalmente abierta de manera empírica por los habitantes locales, sin considerar criterios técnicos como capacidad estructural, resistencia del suelo o condiciones topográficas.

Este deterioro afecta directamente la movilidad de los usuarios y el transporte de productos agrícolas, disminuyendo la productividad de los sectores rurales e incrementando los costos operativos. Adicionalmente, el crecimiento poblacional desordenado y la falta de integración con la planificación urbana han generado una demanda vehicular que supera la capacidad actual de las vías, agravando los problemas de tránsito y aumentando el riesgo de accidentes.

Frente a esta realidad, se hace evidente la necesidad de una intervención técnica que contemple un diseño geométrico adecuado para optimizar las condiciones de las vías rurales. Este enfoque permitirá garantizar un servicio vial eficiente, mejorar la conectividad entre zonas urbanas y rurales, y promover un desarrollo socioeconómico en el cantón Santa Rosa.

1. CAPITULO I: PLANTEAMIENTO DEL PROBLEMA

1.1 Antecedentes

El presente trabajo de titulación se llevará a cabo en la Provincia del Oro, en el Cantón Santa Rosa, específicamente en la parroquia del mismo nombre. Santa Rosa está situada al sur de la región litoral del Ecuador, en una amplia llanura a 10 metros sobre el nivel del mar. Es reconocida como la tercera ciudad más grande y poblada de la provincia de El Oro. La parroquia Santa Rosa abarca una superficie de 141,77 km², lo que representa el 11,40% del territorio cantonal. Geográficamente, se localiza en las coordenadas 78°57'30" de longitud oeste y 3°26'30" de latitud sur. (Gobierno Autónomo descentralizado, 2019)

A partir de los censos realizados por parte del Instituto Nacional de Estadísticas y Censos (INEC) en el año 2001 en donde Santa Rosa presentó una población de 46,200 habitantes y 2010 donde hubo un registro de 52,863 habitantes, se determina una tasa de crecimiento poblacional del 1.51% y se procede a realizar las proyecciones de población haciendo uso del método geométrico, los resultados se muestran en la tabla 1.

Tabla 1. Proyección de la población de la parroquia Santa Rosa

Año	Población
2020	61,399
2025	66,171
2030	71,314
2035	76,856

A su vez se puede dividir esta población según la zona en la que se encuentra, creándose así dos categorías: la rural y la urbana donde están quienes habitan la cabecera parroquial. En la tabla 2 se detalla la proyección de población en este contexto.

Fuente: Elaboración Propia

Tabla 2. Proyección poblacional rural y urbana de la parroquia Santa Rosa

	Área		
Año	Rural	Cabecera Parroquial	
2020	4,569	56,830	
2025	4,924	61,247	
2030	5,307	66,007	
2035	5,720	71,137	

Fuente: Plan de uso y gestión del suelo Santa Rosa 2023

El cantón Santa Rosa cuenta con un territorio rural de suelos altamente productivos para la agricultura, la ganadería y la acuicultura, gracias a la presencia de ecosistemas estratégicos como manglares y humedales. Estas características no solo destacan su potencial productivo y ecológico, sino que también crean un paisaje natural distintivo que define la identidad del territorio (Gobierno Autónomo descentralizado, 2019).

El perímetro urbano en las zonas de la parroquia Santa Rosa se ha visto modificado, principalmente, por una tendencia a reconocer asentamientos irregulares realizados sin considerar límites catastrales actuales, lo que conlleva una expansión de las áreas urbanas hacia la zona rural. El patrón de crecimiento urbano en la ciudad de Santa Rosa, está sectorizado hacia el norte y noreste, incluyendo la nueva parroquia denominada Nuevo Santa Rosa; razón por la cual se requiere de una actualización de la red vial que integre estos nuevos sectores (Gobierno Autónomo descentralizado, 2019).

En la Provincia de El Oro la competencia de las vías se divide entre el Gobierno Autónomo Descentralizado municipal del cantón Santa Rosa (GAD) y el Gobierno Autónomo Descentralizado Provincial de El Oro (GADPEO), a partir de esto se establece un límite urbano dentro del cual la competencia de las vías que allí se encuentra le pertenecerá al GAD Cantonal dejando el resto del sistema vial a cargo del Consejo provincial. Esta división facilita la destinación de recursos, obras y mantenimiento del sistema vial (Gobierno Autónomo Descentralizado Provincial de El Oro, 2019).

El Gobierno Autónomo descentralizado (2019) establece que la red vial del cantón está integrada por: la red vial estatal, la provincial y la cantonal urbana. El estudio se centrará en la red vial provincial, la misma que comunica cabeceras parroquiales-rurales con diferentes comunidades o recintos vecinales, esta red cuenta con un total de 292.31 km lo cual corresponde al 39% de la red vial total del cantón (Gobierno Autónomo descentralizado, 2019).

Tabla 3. Distribución de la red vial cantonal

Ámbito	Longitud (km)	%
Estatal	50.27	7
Provincial Rural	292.31	39
Urbano-Cabecera Cantonal	298.99	40
Urbano-Parroquial	107.09	14
Total	748.66	100%
Fuente: Plan de desarrollo	y ordenamiento	

Fuente: Plan de desarrollo y ordenamiento territorial del cantón Santa Rosa 2019-2023

El Gobierno Autónomo Descentralizado Provincial de El Oro (2019) en su PDYOT divide la red vial provincial en tres categorías: vías de primer orden, este tipo de carretera conecta las cabeceras de la provincia con las ciudades principales; vías de segundo orden, las cuales están caracterizadas por vincular territorios urbanos con rurales, es decir, es la unión entre las vías de primer y tercer orden; y, por último, vías de tercer orden que corresponderían a las zonas rurales y caminos vecinales. En la siguiente tabla se muestra la longitud de la red vial según su clasificación.

Tabla 4. Jerarquía de la red vial de El Oro

Tipo	Cantidad (km)	%
Primer orden	842.25	26.63
Segundo orden	517.11	16.35
Tercer orden	1,820.56	57.6
Total	3,179.92	100
Fuente: Plan de	desarrollo y ordenamiento	

Fuente: Plan de desarrollo y ordenamiento territorial de la provincia de El Oro 2019

En la siguiente tabla se muestra el material del cual está conformada la capa de rodadura de las vías de tercer orden y la distribución correspondiente.

Tabla 5. Material de las vías de tercer orden

Material	Cantidad	%
Lastre	1,386.69	76.1%
Pavimento flexible	92.15	5.1%
Tierra	342.73	18.8%
Total	1,821.56	100%
F (D1 1	.'' 11 1 0 4	

Fuente: Plan de uso y gestión del suelo Santa

Rosa 2023

El cantón Santa Rosa experimenta un notable crecimiento demográfico, lo cual resalta la importancia de mejorar su infraestructura vial. A pesar de esto, muchas de sus vías aún se encuentran en condiciones desfavorables, limitando la productividad de los sectores rurales y obstaculizando su desarrollo. En este contexto, el diseño del trazado geométrico de vías rurales se plantea como una solución viable para optimizar las condiciones de movilidad y beneficio para los usuarios. Por ello, el presente trabajo de titulación se enfoca en la evaluación de un caso de estudio sobre este tipo de vía, con el objetivo de proponer alternativas de diseño, basadas en criterios técnicos y normativas vigentes, que mejoren su funcionalidad.

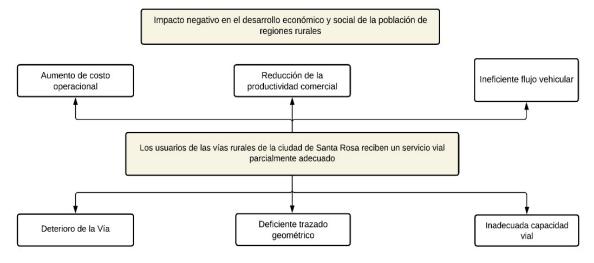
1.2 Descripción de la situación problemática (Causas y efectos)

El cantón Santa Rosa, caracterizado por su creciente población y su importante actividad económica, enfrenta desafíos relacionados con la estructura y funcionalidad de sus vías, las cuales presentan condiciones que dificultan el transporte eficiente de productos y personas. Esta realidad limita el desarrollo económico y social de la región y refleja la necesidad de abordar problemas asociados con la infraestructura vial y su capacidad para satisfacer la demanda actual.

La vía objeto de estudio carece de una estructura y características propias de un diseño técnico formal, ya que, como ocurre frecuentemente en las zonas rurales, estas vías suelen ser abiertas de manera empírica por los habitantes locales. En estas áreas, dedicadas principalmente a actividades agrícolas, la necesidad de acceder a las fincas impulsa la apertura de caminos de manera informal, sin considerar aspectos como el diseño geométrico, la resistencia del suelo o las condiciones topográficas.

Posteriormente, estas vías son reconocidas por entidades municipales o provinciales, y con el tiempo se incorporan a los planes de desarrollo vial. Sin embargo, al no haber sido concebidas bajo criterios técnicos desde su origen, presentan limitaciones significativas en su funcionalidad y durabilidad, lo que afecta la movilidad de los usuarios y el transporte eficiente de productos agrícolas.

La falta de conexión entre la planificación urbana y el diseño de las vías desencadena en la circulación de tráfico no esperado sobre las mismas, lo cual, sumado a una falta de infraestructura adecuada, genera el desgaste prematuro de la vía y problemas de transitabilidad.


Además, la vía en estudio no cuenta con una capa de rodadura adecuada que garantice condiciones óptimas para el tránsito vehicular. Su superficie actual, en estado de lastrado o camino afirmado, limita su funcionalidad y capacidad para soportar el tráfico agrícola y de pasajeros. Estas condiciones generan problemas como un mayor desgaste de los vehículos, tiempos de traslado prolongados y una menor seguridad vial, especialmente durante las épocas de lluvia, cuando la superficie se torna inestable y difícil de transitar.

Otro factor que acentúa el problema es el crecimiento demográfico desordenado. La falta de organización en la expansión del cantón provoca una desconexión entre la

planificación urbana y el diseño de las vías, lo cual, dificulta prever y gestionar el impacto de la creciente población sobre el diseño y funcionalidad de las vías. Esto da lugar a un flujo vehicular atraído no previsto que acelerará el desgaste de la estructura vial.

Si no se realizan los diseños técnicos pertinentes para la mejora de la vía, los problemas relacionados con la transportación de productos agrícolas y la movilidad de los habitantes continuarán agravándose. Esto no solo limitará el crecimiento económico del cantón, al obstaculizar el acceso a mercados y reducir la competitividad de los productores locales, sino que también afectará directamente a la calidad de vida de los habitantes del sitio "El Quemado", quienes enfrentarán mayores dificultades para acceder a servicios públicos esenciales como salud, educación y seguridad.

Ilustración 1. Árbol de Problemas

Fuente: Elaboración propia.

1.3 Formulación del problema (preguntas científicas)

El trazado geométrico de vías rurales ha sido objeto de estudio en diversas investigaciones y planes de ordenamiento territorial, lo que proporciona una base de información relevante para abordar los desafíos actuales. Datos sobre el crecimiento demográfico, el flujo vehicular y las condiciones de las vías existentes están disponibles y constituyen un recurso valioso para entender las limitaciones de la infraestructura actual. Estos antecedentes permiten sustentar técnicamente la necesidad de intervenir en las vías para mejorar la conectividad movilización y la calidad del servicio vial.

Actualmente, en el cantón, el estado de las vías rurales evidencia un deterioro significativo y una insuficiente capacidad para satisfacer las demandas del tráfico. Frente a este panorama, el diseño de un trazado geométrico adecuado se presenta como una alternativa viable para mejorar las condiciones de las vías rurales.

Implementar soluciones que incluyan estudios actualizados del terreno, mejores técnicas de diseño y un enfoque integrado con la planificación urbana podría resolver los problemas existentes. Estas estrategias no solo mejorarían la calidad de las vías, sino que también contribuirían a optimizar el transporte, reducir los costos operativos y fomentar el desarrollo sostenible del sitio "El Quemado".

Considerando la situación expuesta y los desafíos identificados, esta investigación plantea la siguiente interrogante: ¿Es inadecuado el servicio vial que reciben los usuarios de las vías rurales de la ciudad de Santa Rosa?

Como base para el desarrollo del trabajo de titulación se han planteado las siguientes preguntas científicas: ¿Existe un buen diseño geométrico de carreteras que permita un adecuado servicio de vialidad para los habitantes del sitio "El Quemado" ?, ¿Cuáles son las condiciones actuales de las vías rurales del sitio "El Quemado" ?, ¿Cuál es una posible alternativa para el mejoramiento de las vías rurales del sitio "El Quemado"?

1.4 Delimitación del objeto de estudio

El presente trabajo de investigación se enfoca en las vías en zonas rurales que presenten trazados geométricos deficientes, particularmente se tratará el caso de la ciudad de Santa Rosa en la provincia de El Oro. El trabajo se centrará en analizar datos obtenidos en campo sobre las condiciones actuales de la carretera, con el objetivo de establecer su capacidad estructural actual. A partir de la información recolectada sobre el tráfico vehicular, las características del suelo y el Índice de Capacidad de Soporte (CBR), se determinarán los espesores de las capas de base, subbase y rodadura necesarios para definir una especificación técnica del tipo de pavimento adecuado para la vía rural en estudio. Esta especificación técnica se basará en las normas del Ministerio de Obras Públicas (MOP), estableciendo la clase y tipo de materiales requeridos para las capas de base y subbase, así como el tamaño y características del material a utilizar en la capa de rodadura.

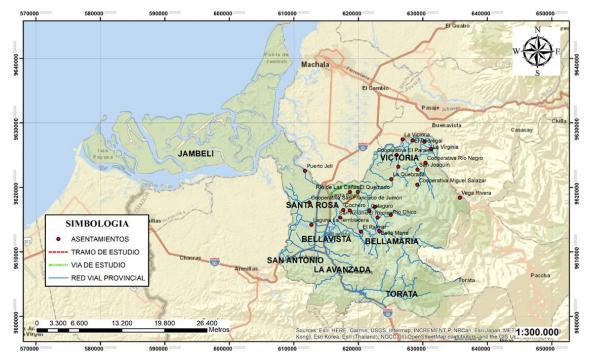


Ilustración 2. Red vial provincial del cantón Santa Rosa

Fuente: Elaboración propia.

La vía de estudio está compuesta por 1 carril bidireccional con 5m de ancho de carril y sirve como conexión entre varias fincas y terrenos que se dedican al sector ganadero y agrónomo de la ciudad. La vía representa una ruta importante para el cantón ya que conecta la zona rural con la zona urbana proporcionando un eje hacia el cual la ciudad puede expandirse (Gobierno Autónomo Descentralizado Provincial de El Oro, 2019).

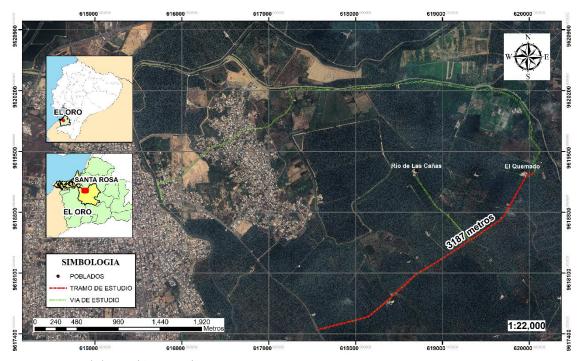

Tiene su inicio a partir de la Vía Bella María y termina su recorrido en la Parroquia Nueva Santa Rosa con una extensión aproximada de 9.1 km. En la siguiente tabla se especifican las coordenadas de inicio y fin del tramo y se presenta una ilustración demostrativa.

Tabla 6. Coordenadas de la vía de estudio

	Norte	Este
Inicio	9'617,446.4624	617,563.582
Fin	9'619,369.806	620,049.500

Fuente: Elaboración propia.

Ilustración 3. Tramo de estudio (vía Al Quemado)

Fuente: Elaboración propia.

1.5 Justificación

En los últimos años, Ecuador ha experimentado importantes avances en el sector vial, con la mejora y construcción de nuevas carreteras. Estos proyectos han impulsado el desarrollo de pequeñas comunidades, favoreciendo el aumento de la producción agrícola y optimizando la capacidad de transporte de sus productos hacia diferentes mercados. La inversión en infraestructura vial desempeña un papel crucial en el desarrollo de sectores específicos y de la economía en general, ya que facilita la conexión entre personas y mejora el acceso a servicios públicos y mercados, como los de bienes, servicios y empleo. Los proyectos de construcción de carreteras estén diseñados para beneficiar a una localidad específica, pero su impacto puede trascender y extenderse significativamente,

mejorando tanto la accesibilidad absoluta como relativa de la región, lo que podría promover el desarrollo económico.

El sistema vial del cantón Santa Rosa está estratégicamente integrado tanto a nivel provincial como nacional, aprovechando su ubicación geográfica e infraestructura para consolidarse como un punto clave de conectividad. Este cantón funciona como un nodo fundamental que facilita la articulación dentro de la provincia y la conexión con diversos puertos del país. No obstante, el diseño de las vías presenta deficiencias que generan inquietud respecto a la seguridad vial y sus repercusiones en la situación socioeconómica de la región. Frente a estos desafíos, implementar un diseño geométrico actualizado y adaptado a las necesidades actuales de movilidad se presenta como una solución viable.

Este proyecto permite consolidar los saberes teóricos y prácticos adquiridos durante la formación académica, desarrollando habilidades en la ejecución de trabajos técnicos y fortaleciendo la experiencia en el ámbito del diseño vial. Su elaboración es parte del proceso para la obtención del título de Ingeniero Civil, integrando consideraciones técnicas en el diseño geométrico y estructural de carreteras. Así mismo, su implementación busca optimizar la funcionalidad de las carreteras analizadas, incrementando su nivel de servicio y garantizando condiciones de seguridad para el flujo vehicular.

1.6 Objetivos

1.6.1. Objetivo General

Diseñar una alternativa de trazado geométrico en vías rurales mediante la realización de estudios técnicos, análisis de laboratorio y el uso de herramientas tecnológicas; que permita el alcance de un servicio vial adecuado para los usuarios del tramo de la vía Al Quemado, desde la abscisa 0+000 hasta la abscisa 3+187, contribuyendo así con el desarrollo socioeconómico de este sitio y por ende de la ciudad de Santa Rosa.

1.6.2. Objetivos específicos

 Examinar las alternativas de diseño en trazado geométrico para vías rurales mediante la revisión de bibliografía pertinente y estudios previos para la determinación de criterios de diseño.

- Evaluar el tramo de la vía rural Al Quemado mediante estudios técnicos para la determinación de su capacidad de soporte y las problemáticas existentes en cuanto a su funcionalidad y durabilidad.
- Proponer un diseño de vía rural en el tramo 0+000 a 3+187 de la vía Al Quemado a partir de los resultados del análisis técnico y las condiciones del tráfico que garanticen su desempeño adecuado y la seguridad vial de los usuarios.

2. CAPITULO II: MARCO TEÓRICO

2.1 Antecedentes contextuales

2.1.1. Macro

A escala global, el trazado geométrico de las vías constituye un elemento clave en la planificación y diseño de infraestructuras viales. Por ejemplo, en la carretera rural NH-23 en India, evaluada por Garnaik et al. (2023), se utilizó un Sistema de Inferencia Difusa (FIS) implementado a partir de datos recolectados en campo y modelos elaborados a base de conocimientos de expertos. Este sistema permitió analizar factores críticos como radios de curva pequeños, ángulos de deflexión pronunciados y visibilidad limitada, identificando patrones de riesgo. Mediante la integración con herramientas como MATLAB, AutoCAD y MX Road, se propusieron intervenciones como ajustes en los radios horizontales y transiciones de superelevación, logrando reducir significativamente los accidentes en la vía. Además, el sistema permitió predecir el impacto de estas intervenciones en el comportamiento de los conductores, facilitando un enfoque preventivo para mejorar la seguridad vial.

De manera complementaria, Lopes et al. (2019) llevaron a cabo un estudio comparativo sobre software para el diseño geométrico de carreteras, evaluando herramientas como TCP-MDT, AutoCAD Civil 3D y TopoGRAPH en el diseño de un tramo en Málaga, España. Los resultados mostraron que TCP-MDT y TopoGRAPH destacaron en el cálculo de superelevaciones y superanchos, alineándose con normativas internacionales como el Manual de Proyecto Geométrico de Carreteras (DNIT, 1999) y las normas AASHTO (2011). TCP-MDT sobresale por su facilidad de uso y precisión en la generación de alineamientos horizontales, mientras que TopoGRAPH permite un análisis detallado de pendientes y transiciones, lo que resulta útil en terrenos irregulares. Por otro lado, AutoCAD Civil 3D se destacó en simulaciones de volúmenes de corte y relleno, ofreciendo una visualización dinámica que optimiza el diseño y reduce errores en la planificación del movimiento de tierras. Estos hallazgos resaltan la importancia de seleccionar herramientas tecnológicas adecuadas para mejorar la precisión y eficiencia en proyectos viales.

Por otro lado, Maher & Ebrahimi (2019) estudiaron el comportamiento estructural de pavimentos en configuraciones de una sola capa y de múltiples capas. A través de

experimentos de laboratorio, como ensayos de resistencia a la compresión y capacidad de soporte, y modelos numéricos que simularon condiciones de carga dinámica, identificaron que las configuraciones multicapa ofrecían mayor resistencia y flexibilidad. Estas pruebas permitieron analizar el comportamiento estructural de las capas en diferentes escenarios de carga y humedad, lo que fundamentó la recomendación del uso de aditivos como cal o cemento para estabilizar suelos en proyectos exigentes. Adicionalmente, el estudio identificó cómo la interacción entre las capas contribuye a mejorar la distribución de cargas, prolongando la vida útil del pavimento.

Así mismo, Caro & Caicedo (2017) analizaron tecnologías sostenibles para vías terciarias, destacando la importancia de adaptar soluciones a las condiciones locales. Este estudio resalta el empleo de materiales no convencionales y la participación comunitaria como pilares para mejorar la conectividad rural. Entre los criterios evaluados se incluyeron aspectos ambientales como la reducción del impacto ecológico, económicos como la optimización de recursos locales y sociales como la integración de las comunidades en el mantenimiento de las vías.

Finalmente, Virsis et al. (2020) abordaron el diseño vial en suelos de baja capacidad portante, como turba y terrenos orgánicos, proponiendo técnicas innovadoras como columnas combinadas de concreto y grava. Estos métodos demostraron ser eficaces para estabilizar tramos críticos, asegurando la funcionalidad y prolongando la vida útil de las carreteras. La investigación incluyó simulaciones de deformación bajo diferentes condiciones de carga, lo que permitió optimizar las técnicas empleadas según las particularidades del terreno.

2.1.2. Meso

En el ámbito regional, la evaluación de velocidades de operación es fundamental para garantizar la seguridad vial y optimizar el diseño geométrico. En Ecuador, García-Ramirez et al. (2017) analizaron cómo las velocidades varían según el día y la hora en tramos rectos de carreteras rurales en el cantón Loja, proporcionando información clave para determinar las condiciones críticas de operación en tramos rectos. Complementariamente, García-Ramírez & Alverca (2019) desarrollaron ecuaciones de predicción para curvas horizontales y entre-tangencias en carreteras montañosas, considerando variables como el radio de las curvas y las pendientes longitudinales.

Ambos estudios emplearon herramientas avanzadas como MetroCount y Video VBOX Lite, las cuales permitieron obtener datos precisos sobre velocidades de operación en tiempo real y bajo diferentes condiciones de tráfico. Estas herramientas no solo garantizaron una recolección confiable de datos, sino que también facilitaron la calibración de modelos representativos del contexto rural ecuatoriano, reflejando patrones de tráfico específicos y comportamientos de los conductores locales.

Además, Zhangallimbay & Ordoñez (2022) evaluaron el impacto de la infraestructura vial en la productividad agrícola en provincias como El Oro y Manabí. Su modelo de diferencias en diferencias demostró que las mejoras viales incrementaron significativamente la productividad y ventas de cultivos permanentes, destacando la importancia de invertir en conectividad rural para potenciar la economía local. Este enfoque resalta cómo las inversiones en infraestructura no solo mejoran la movilidad, sino que también tienen un impacto directo en el desarrollo económico y social de las comunidades.

2.1.3. Micro

A nivel provincial, se han llevado a cabo esfuerzos significativos para fortalecer la infraestructura vial, buscando mejorar la conectividad y el impacto positivo en la comunidad. Galarza et al. (2024) y Reyes et al. (2022) analizaron el diseño geométrico de carreteras identificando deficiencias en radios de curva, peraltes y anchos de carril, los cuales incrementan el riesgo de accidentes. El estudio utilizó aforos vehiculares y levantamientos topográficos con drones RTK para obtener datos precisos sobre velocidad de operación, pendientes y dimensiones de las curvas. A partir de estos datos, emplearon AutoCAD Civil 3D para modelar alternativas de diseño que mejoraran la seguridad y cumplieran con normativas nacionales. Los resultados mostraron que las propuestas lograron aumentar los radios de curva, ajustar los peraltes y ampliar los anchos de carril, lo que permitió una reducción significativa en los riesgos de accidentes y una mejora notable en la comodidad y seguridad de los usuarios.

Además, el estudio de Vásquez et al. (2023) abordó la optimización de espesores de pavimento en la vía rural Chilla - Quera mediante técnicas de estabilización con cemento hidráulico, destacando soluciones prácticas que incrementaron la durabilidad y resistencia estructural de las vías rurales. La metodología incluyó un análisis detallado de las

propiedades del suelo y su interacción con las cargas vehiculares previstas, permitiendo determinar configuraciones óptimas para las capas de base y sub-base. Los resultados evidenciaron que estas soluciones no solo mejoraron la funcionalidad de la vía, sino que también redujeron significativamente los costos de mantenimiento a mediano y largo plazo.

Estos estudios subrayan la importancia de integrar tecnologías modernas, metodologías adaptadas al contexto local y un enfoque holístico para garantizar que las infraestructuras viales cumplan con las necesidades actuales y futuras de la población.

2.2 Antecedentes conceptuales

La infraestructura vial constituye un pilar esencial para el desarrollo regional, pues fomenta la conectividad entre comunidades, impulsa el intercambio económico y mejora la calidad de vida de la población. Como señalan Muhammed et al. (2023), los ejes viales, definidos como las carreteras que estructuran la red vial de un territorio, desempeñan un papel crucial al conectar zonas urbanas, periurbanas y rurales.

La infraestructura vial constituye el conjunto de elementos físicos que permiten la circulación segura y eficiente de vehículos y peatones. Comprende tanto las vías como sus componentes estructurales (pavimento, subrasante, base, subbase), geométricos (alineamientos, secciones, pendientes) y funcionales (señalización, drenaje, control de tránsito). En el ámbito rural, la infraestructura vial cumple un rol fundamental al conectar zonas agrícolas y productivas con centros poblados, favoreciendo el desarrollo económico y social de las comunidades. Muhammed et al. (2023)

Además, la conectividad vial, entendida como la capacidad de una red de carreteras para enlazar diferentes puntos de un territorio, es un indicador clave del desarrollo regional. Una red vial eficiente no solo mejora la accesibilidad, sino que también impulsa la inclusión social al facilitar el acceso a servicios esenciales como la educación y la salud.

En este contexto, las vías rurales adquieren una función particular. De acuerdo con Narvaez (2017), estas carreteras, a diferencia de las urbanas o de alta capacidad, son esenciales para integrar comunidades aisladas con centros de producción y comercio. Sin embargo, su diseño y mantenimiento presentan desafíos únicos, como la adaptación a terrenos topográficamente complejos, el uso de materiales locales y la gestión de

presupuestos restringidos. En las regiones agrícolas, estas vías son especialmente importantes, ya que facilitan el transporte de productos hacia mercados más amplios, promoviendo así la economía local.

Para garantizar la funcionalidad y durabilidad de la infraestructura vial, es fundamental realizar una evaluación integral de las carreteras. Según Surichaqui et al. (2023), este análisis incluye aspectos esenciales como la resistencia estructural, el tráfico vehicular y las condiciones de seguridad vial. A través de levantamientos topográficos y estudios de suelo, se identifican áreas críticas que requieren mejoras inmediatas o rediseños significativos.

En particular, los levantamientos topográficos permiten recolectar datos taquimétricos del relieve terrestre mediante el uso de equipos como estaciones totales y GPS, herramientas fundamentales para calcular volúmenes de explanación y elaborar diseños geométricos adaptados al terreno, minimizando los impactos ambientales (Surichaqui et al., 2023).

El tráfico vehicular es otro componente clave en la evaluación y gestión de carreteras. Wang et al. (2013) lo define como la interacción dinámica entre velocidad, densidad, flujo y congestión, factores interrelacionados que determinan la capacidad operativa de la vía. A medida que la densidad aumenta, la velocidad disminuye, afectando directamente el flujo vehicular y la funcionalidad de la carretera. Este comportamiento se analiza mediante aforos vehiculares, que consisten en el conteo de vehículos que transitan por un punto específico durante un periodo determinado.

Los aforos permiten calcular indicadores clave como el Tránsito Promedio Diario Anual (TPDA), fundamental para clasificar las vías y definir los requisitos de diseño (Rodriguez et al., 2023). Además, el TPDA se complementa con el análisis de los ejes equivalentes (ESALS), que mide el impacto acumulativo de las cargas pesadas sobre la estructura del pavimento, proporcionando información crucial para garantizar niveles de servicio adecuados.

En cuanto a la clasificación de las carreteras, Montaño De León et al. (2015) destacan tres enfoques principales: transitabilidad, administrativa y técnica oficial. La transitabilidad evalúa el estado constructivo de las vías, clasificándolas como pavimentadas, revestidas

o de terracería. La clasificación administrativa organiza las vías según la entidad gubernamental responsable de su construcción y mantenimiento, ya sea federal o estatal.

La clasificación técnica oficial, utilizada principalmente en el diseño geométrico de autopistas, categoriza las vías según el TPDA, estableciendo su jerarquía y características específicas. Esta clasificación permite ajustar el diseño de las carreteras a las demandas reales de tráfico, asegurando su funcionalidad. De manera general, se definen seis tipos de vías (A4, A2, B, C, D, y E) las cuales, según el rango de TPDA que soportan, se clasifican en vías de alta capacidad (TPDA de 5,000 a 20,000 vehículos) y vías de baja capacidad (TPDA de hasta 100 vehículos). (Montaño De León et al., 2015)

La consistencia de la vía es un concepto central en el diseño geométrico de carreteras, ya que garantiza que el trazado de la infraestructura vial responda de manera predecible y natural a las expectativas de los conductores. Según Cantisani & Del Serrone (2020), esta característica asegura que los elementos geométricos consecutivos estén coordinados para promover un comportamiento de conducción uniforme y armonioso, minimizando el riesgo de maniobras inseguras. De manera complementaria, Oñate-Bastidas & Calero-Valenzuela (2023) destacan que una vía consistente permite a los conductores transitar a una velocidad cómoda y constante, reforzando tanto la seguridad como la comodidad del viaje.

Desde esta perspectiva, el diseño geométrico integra múltiples elementos que aseguran la funcionalidad y sostenibilidad de las carreteras. Según Vivek Gajanan Sukalkar et al. (2022), estos elementos incluyen alineaciones horizontales y verticales, distancias de visibilidad, elementos transversales y características de intersecciones. Además, consideran factores de mayor escala como la velocidad de diseño, las condiciones topográficas, el tráfico proyectado y los impactos ambientales.

Paikun et al. (2021) dividen las alineaciones verticales en tramos rectos y curvos, diseñados utilizando curvas circulares completas, curvas de transición espiral-circular y curvas espirales modificadas, que optimizan la seguridad y funcionalidad del trazado. Por otro lado, la alineación vertical, también analizada por Paikun et al. (2021), se enfoca en el diseño del perfil longitudinal de la carretera, considerando pendientes positivas (ascensos) y negativas (descensos), que se combinan para formar curvas convexas y cóncavas.

Elementos como los peraltes o superelevaciones son fundamentales para garantizar la seguridad en las curvas. Gil-Mora & Sosa-Aguirre (2021) sostiene que estas inclinaciones transversales contrarrestan las fuerzas centrífugas, proporcionando estabilidad vehicular y reduciendo el riesgo de derrape o vuelco. Otros aspectos críticos son las pendientes, que deben mantenerse dentro de límites razonables para evitar problemas de visibilidad y desgaste excesivo de los sistemas de frenado. Finalmente, el ancho de carril y los sobreanchos en curvas contribuyen a la maniobrabilidad de los vehículos, mejorando la seguridad y fluidez del tránsito.

La seguridad y operación vial también son prioritarias en el diseño y gestión de carreteras. González et al. (2023) destaca las zonas laterales a las vías como un elemento clave y menciona que estas deben estar libres de obstáculos peligrosos y contar con barreras de contención para minimizar riesgos.

Así mismo, la variabilidad en las velocidades vehiculares influye significativamente en la operación vial. Maghrour Zefreh & Török (2020) menciona que esta distribución está determinada por factores como la densidad vehicular y las condiciones de la vía Galarza et al. (2024) añaden que la velocidad de diseño y la velocidad de operación son determinantes para la seguridad vial; mientras la primera establece un límite seguro, la segunda refleja las condiciones reales de tránsito. Una discrepancia significativa entre ambas puede aumentar el riesgo de accidentes.

La densidad vehicular es otro factor relevante, ya que mide la cantidad de vehículos presentes en una sección de la vía y es clave para determinar el nivel de servicio, según los rangos definidos en el manual HCM 2010. Peñafiel et al. (2022) explican que este nivel clasifica la calidad del flujo vehicular desde "A" (flujo libre) hasta "F" (congestión severa). Cuando una vía alcanza su capacidad máxima o el límite de su nivel de servicio, Paladines et al. (2022) destacan la necesidad de ajustar sus especificaciones técnicas para satisfacer las nuevas demandas de tráfico, garantizando tanto la movilidad como el desarrollo urbano y económico.

Finalmente, el diseño de pavimentos complementa esta evaluación integral de las carreteras. Según Rogel et al. (2023), este proceso busca establecer las características estructurales y funcionales del pavimento para responder a las demandas del tráfico y las condiciones del terreno. Yu et al. (2020) explican que la estructura del pavimento está

compuesta por varias capas: subrasante, subbase, base y capa de rodadura. Cada una de estas capas desempeña un papel específico para soportar las cargas vehiculares y prevenir deformaciones.

Dentro de la infraestructura vial, el pavimento es el componente estructural encargado de soportar las cargas de tránsito y transmitirlas progresivamente hacia el terreno natural. Su diseño depende de múltiples factores como la resistencia del suelo, el volumen y tipo de tráfico, las condiciones climáticas y los recursos económicos disponibles. Según su comportamiento estructural y materialidad, los pavimentos pueden clasificarse en: flexibles, rígidos y semirrígidos. La elección de cada uno depende de factores como el tipo de suelo, volumen de tránsito, disponibilidad de materiales, costos y facilidad de mantenimiento. (Castro & Castro, 2020)

El pavimento flexible, también denominado pavimento asfáltico, se caracteriza por estar conformado por una capa de rodadura asfáltica, una base granular y una subbase. Este tipo de estructura permite deformaciones controladas en las capas inferiores sin comprometer la integridad del pavimento. Su diseño está enfocado en distribuir las cargas vehiculares hacia la subrasante mediante un sistema de capas sucesivas. De acuerdo con Barreto et al. (2018) "está conformado por capa asfáltica en la superficie de rodadura, la cual permite pequeñas deformaciones en capas inferiores sin que la estructura falle. Debajo de esta capa, se encuentra base granular y capa de sub-base, destinadas a distribuir y transmitir cargas originadas por el tránsito"

La capa de rodadura, ubicada en la parte superior, está compuesta por mezclas asfálticas, como asfalto en caliente (HMA) o mezclas modificadas con polímeros. Esta capa debe resistir el desgaste, impermeabilizar la superficie y proporcionar suficiente fricción para garantizar la seguridad y comodidad del conductor.

Inmediatamente debajo se encuentra la base, una capa elaborada con materiales granulares procesados o estabilizados, como grava triturada o mezclas tratadas con agentes hidráulicos, cuya función es distribuir las cargas hacia las capas inferiores y ofrecer una alta resistencia al corte.

La subbase, que actúa como una capa intermedia de soporte, está formada por materiales granulares no tratados o estabilizados con cemento, cal u otros aditivos químicos. Estos

materiales, como gravas naturales o trituradas, deben cumplir con límites granulométricos específicos, proporcionando resistencia a las deformaciones y facilitando el drenaje del pavimento.

Por último, la subrasante, que puede consistir en suelo natural o mejorado, debe garantizar una adecuada capacidad de soporte con un CBR mínimo especificado, además de mantener una densidad suficiente para evitar asentamientos y fallas estructurales. La correcta selección y preparación de los materiales, como establece el NEVI-2012, asegura la funcionalidad y durabilidad del pavimento, garantizando una infraestructura vial segura y sostenible bajo diversas condiciones climáticas y de tráfico.

El pavimento rígido está constituido principalmente por losas de concreto hidráulico, las cuales poseen alta rigidez estructural. Este tipo de pavimento transmite las cargas hacia el terreno mediante el efecto de losas apoyadas sobre una base, y su capacidad de carga depende en gran medida de la resistencia del concreto. Rogel et al. (2023) menciona que está formado hidráulicamente por losas de hormigón, en ocasiones reforzado con acero. Esta losa va sobre un pedestal. Aunque su costo inicial es más elevado que el flexible, ofrece una vida útil mayor y menor frecuencia de mantenimiento.

El pavimento semirrígido, también conocido como mixto, representa una solución intermedia entre los dos anteriores. Combina una capa bituminosa sobre capas tratadas con conglomerantes hidráulicos, proporcionando mayor capacidad estructural que un pavimento flexible, pero con menor rigidez que uno rígido. De acuerdo con el Ministerio de Transporte y Obras Públicas del Ecuador (2013) en la Norma Ecuatoriana Vial NEVI-12 Vol. 2B, "el pavimento semirrígido es un firme constituido por un pavimento bituminoso de cualquier espesor sobre una o más capas tratadas con conglomerantes hidráulicos, con espesor conjunto igual o superior a 20 cm

2.3 Antecedentes referenciales

En su investigación, González et al. (2023) describe una metodología de 3 pasos para el diseño sostenible de ejes viales, en la primera fase categoriza las zonas de influencia directa del eje vial para su posterior análisis de impacto. La segunda fase consistió en la realización de aforos vehiculares con el fin de obtener el TPDA, realizar una proyección del tráfico sobre el eje y clasificar la vía según los estándares del Ministerio de Transporte y Obras Públicas (MTOP).

Finalmente, realizó la evaluación de los parámetros geométricos clave como los radios de curva, las distancias de visibilidad, los peraltes y el ancho de carril, siguiendo las Normas Ecuatorianas Viales (NEVI-12). Los resultados finales indicaron el nivel de servicio de la via y además le permitieron identificar deficiencias en aspectos como conectividad vial, seguridad en las zonas laterales y elementos geométricos, incluyendo señalización y barreras de protección.

Rogel et al. (2023) analizaron la problemática de una vía alterna en condiciones deficientes, proponiendo un diseño geométrico optimizado para mejorar su funcionalidad. La metodología empleada incluyó levantamientos topográficos utilizando una estación total SOKKIA CX-105 y RTK, los datos fueron procesados en el software Civil 3D para generar modelos digitales del terreno. Además, se realizaron ensayos de laboratorio en seis calicatas extraídas del lugar de estudio, aplicando las normativas AASHTO y ASTM, evaluando parámetros como el índice CBR para clasificar la calidad de la subrasante.

En cuanto al análisis del tráfico, se efectuaron aforos vehiculares que determinaron un Tránsito Promedio Diario Anual (TPDA), a partir de este dato se clasificó la vía como de cuarto orden según los estándares del MTOP. Con base en estos estudios, se diseñó un paquete estructural de pavimento flexible compuesto por capas de rodadura, base, subbase y mejoramiento, ajustando sus espesores a las condiciones del tráfico proyectado.

Navarro (2023) abordó el diseño geométrico de la carretera Arenillas - Intersección La Cuca, con el objetivo de mejorar la conectividad y funcionalidad de una vía de importancia agrícola. La metodología incluyó levantamientos topográficos para la generación de una malla de puntos y modelar el terreno en Civil 3D. Se realizaron ensayos de laboratorio en tres calicatas, con pruebas de granulometría, límites de Atterberg, Proctor modificado y CBR, logrando con esto la clasificación del tipo de suelo existente. El estudio de tráfico empleó conteos manuales para la determinación del TPDA, clasificando la vía como de mediana capacidad según el MTOP.

Para el diseño geométrico, se evaluaron parámetros como radios mínimos de curva y pendientes longitudinales, adoptando una velocidad de diseño de 60 km/h en la zona rural y 50 km/h en la zona urbana. En el diseño estructural del pavimento flexible, se utilizó el método AASHTO 93, calculando espesores de 3 pulgadas para la capa de rodadura, 7 pulgadas para la base granular y 6 pulgadas para la subbase. Los resultados mostraron

que las propuestas realizadas mejoraron significativamente la seguridad y movilidad en la vía, reduciendo costos de transporte y mejorando la calidad de vida de los usuarios al facilitar el acceso a mercados y servicios.

3. CAPITULO III: METODOLOGÍA

3.1 Modalidad de la investigación

3.1.1. Tipo de investigación

Según Arias (2012), los tipos de investigación pueden clasificarse en documental, de campo y experimental, dependiendo de la naturaleza de los datos y el procedimiento metodológico empleado. En el presente trabajo se integran estos tres enfoques, debido a las características del objeto de estudio y la necesidad de abordarlo desde una perspectiva integral.

- Investigación documental: Permitió sustentar teórica y técnicamente el proyecto, mediante la revisión de normativas, libros y artículos científicos relacionados con el diseño geométrico de vías rurales.
- Investigación de campo: Se aplicó mediante el levantamiento de información directa en el sitio de estudio, como el aforo vehicular, el levantamiento topográfico y la toma de muestras de suelo.
- Investigación experimental: Se desarrolló a través de ensayos de laboratorio aplicados a las muestras obtenidas en campo, con el fin de determinar las propiedades físicas y mecánicas del suelo para el diseño estructural.

La combinación de estos tres tipos de investigación permitirá desarrollar un análisis integral del tramo vial, desde sus condiciones reales hasta la formulación de una propuesta técnica fundamentada.

3.2 Descripción de la población

La población de esta investigación estará conformada por los vehículos que transitan a diario por el tramo de la vía rural Al Quemado, ubicada en el cantón Santa Rosa. Dado que se trata de una carretera colectora de tercer orden, con características no pavimentadas y localizada en una zona predominantemente agrícola y ganadera, el flujo vehicular es moderado pero constante; compuesto principalmente por automóviles livianos y camiones tanto livianos como pesados.

Como parte de la recolección de datos, se realizará un aforo vehicular manual durante 7 días consecutivos durante las horas pico, donde se registrará el tipo y frecuencia de paso de vehículos. El TPDS obtenido será la población de este trabajo de titulación.

3.3 Método teórico

3.3.1. Revisión bibliográfica

La investigación iniciará con una revisión bibliográfica que permitirá establecer el marco conceptual y técnico del proyecto. Se recopilará y analizará información proveniente de fuentes normativas, libros especializados, artículos científicos y documentos institucionales relacionados con el diseño geométrico de vías rurales.

Entre los principales documentos que se estudiarán se encuentran las Normas Ecuatorianas de Vialidad NEVI-12 y el Manual AASHTO, los cuales orientarán los criterios técnicos del análisis, la caracterización del suelo y el diseño estructural de pavimentos. Esta fase teórica proporcionará las bases metodológicas necesarias para la ejecución de las actividades prácticas del estudio.

Tabla 7. Normas técnicas especializadas de la AASHTO

Organización	Norma técnica especializada	Ensayo	Descripción
AASHTO	T 27	Análisis de agregados finos y gruesos por tamizado	Este método cubre la determinación de la distribución del tamaño de partículas de agregados finos y gruesos por tamizado.
AASHTO	T 89	Determinación del límite líquido del suelo	Mide el contenido de humedad a partir del cual el suelo cambia de estado plástico a estado líquido.
AASHTO	T 90	Determinación del límite plástico del suelo	Mide el contenido de humedad en el cual el suelo pasa de un estado semisólido a un estado plástico.

AASHTO	Т 96	Ensayo de abrasión de Los Ángeles	Mide la resistencia al desgaste de los agregados gruesos (grava) por fricción y choque.
AASHTO	T 180 D	Ensayo Proctor modificado	Determina la relación entre el contenido de humedad y la densidad máxima seca que puede alcanzar un suelo cuando se compacta con un esfuerzo estándar elevado
AASHTO	T 193	California Bearing Ratio (CBR)	Determina la resistencia al corte de un suelo bajo condiciones de humedad y densidad controladas.
AASHTO	T 265	Determinación del contenido de humedad de suelos en laboratorio	Este método se usa para determinar el total contenido de humedad de un suelo.
Fuente: Elaboraci	ón propia		

3.4 Método empírico

Los métodos empíricos involucran la observación directa y la obtención de datos reales mediante trabajo de campo y ensayos de laboratorio. (Hernández-Rodríguez et al., 2021). Partiendo de esta premisa, en el presente trabajo de titulación se llevarán a cabo distintas etapas que abarcarán el reconocimiento del área de estudio, la recolección de datos en campo, el análisis de la situación actual, la propuesta de rediseño geométrico, la modelación digital del proyecto y el análisis comparativo de los resultados.

3.4.1. Reconocimiento del área de estudio

Se procederá con la identificación del tramo objeto de estudio, correspondiente a la vía rural Al Quemado, ubicada en el cantón Santa Rosa. Se realizará una inspección visual preliminar para observar el estado funcional de la vía, su geometría general y su entorno físico. Esta etapa permitirá planificar adecuadamente la ejecución de las actividades de campo y seleccionar los puntos clave para la toma de datos.

3.4.2. Levantamiento topográfico

Para el levantamiento topográfico del tramo vial en estudio se empleará una estación total marca Sokkia modelo CX-105, complementada con un GPS. El objetivo será registrar con precisión las coordenadas, cotas, radios de curvatura, pendientes longitudinales y transversales, así como los anchos de calzada a lo largo del eje vial y sus márgenes. Los datos registrados se anotarán en una ficha técnica (Anexo 1)

3.4.3. Estudio del tránsito vehicular

Se llevará a cabo un aforo vehicular manual durante siete días consecutivos, en tres rangos horarios considerados como horas pico: de 06:00 a 09:00, de 11:00 a 14:00 y de 15:00 a 18:00. Se registrará el tipo y la cantidad de vehículos que circulan por el tramo, lo que permitirá calcular el Tránsito Promedio Diario Semanal (TPDS), proyectar el Tránsito Promedio Diario Anual (TPDA) y estimar los Ejes Equivalentes (ESALS), necesarios para el diseño estructural del pavimento. Los datos registrados se anotarán en una ficha técnica. (Anexo 2)

3.4.4. Estudio de suelos

Se ejecutarán cuatro calicatas distribuidas estratégicamente a lo largo del tramo vial, priorizando los sectores donde se evidencien cambios significativos en la estratigrafía del suelo. En cada calicata se extraerán muestras a profundidades de 0.00 m, 0.50 m, 1.00 m y 1.50 m. Las muestras serán analizadas en laboratorio mediante ensayos estandarizados conforme a las normas AASHTO. entre ellos: contenido de humedad, análisis granulométrico, límites de Atterberg, ensayo Proctor modificado y CBR. Con estos resultados se clasificará el suelo bajo los sistemas SUCS y AASHTO y se determinará su capacidad de soporte. El registro de los datos de los ensayos se llevará a cabo en las distintas fichas presentadas en el Anexo 3.

3.4.5. Análisis de la situación actual

Con la información recolectada se procederá a evaluar las condiciones geométricas y estructurales existentes del tramo vial. Se identificarán deficiencias en alineaciones, pendientes, radios de curva y anchos de vía, comparándolos con los parámetros establecidos por la normativa NEVI-12. Así mismo, se interpretarán los resultados de los ensayos de laboratorio para detectar debilidades del suelo que puedan comprometer la durabilidad de la vía.

3.4.6. Propuesta de trazado geométrico

Sobre la base del análisis anterior, se elaborará una propuesta técnica que ajuste los elementos geométricos a los lineamientos establecidos por la normativa vigente. Se planteará el rediseño de curvas horizontales y verticales, se optimizarán pendientes y se redefinirán los anchos de calzada. Además, en función de los resultados del TPDA, CBR y ESALS, se calcularán los espesores necesarios para la capa de rodadura, la base y la subbase, seleccionando los materiales adecuados para cada caso.

3.4.7. Modelación y diseño digital

La propuesta será modelada mediante el software Autodesk Civil 3D. Se generarán perfiles longitudinales, secciones transversales, y se representarán las curvas horizontales y verticales del trazado proyectado. Este modelo servirá para validar geométricamente el diseño propuesto comparándolo con normativas vigentes y visualizar su comportamiento técnico ante las condiciones de tráfico y terreno.

3.4.8. Análisis de resultados y conclusiones

Finalmente, se realizará una comparación entre el estado actual de la vía y la propuesta de rediseño. Se evaluarán las mejoras logradas en términos de funcionalidad, seguridad, durabilidad y cumplimiento normativo. Este análisis permitirá fundamentar las conclusiones del estudio y formular recomendaciones.

4. CAPITULO IV: ANÁLISIS DE RESULTADOS

4.1 Clasificación preliminar de la vía

A partir del reconocimiento en campo realizado y del análisis de las condiciones actuales de la vía, se establece preliminarmente que el tramo objeto de estudio corresponde a un camino vecinal, según lo definido en la Norma Ecuatoriana Vial (Ministerio de Transporte y Obras Públicas del Ecuador, 2013) Esta clasificación se fundamenta en que la vía conecta zonas de producción agrícola con la cabecera cantonal, presenta una superficie no pavimentada (lastre o afirmado), y carece de diseño geométrico formal. Además, su trazo actual fue abierto por los propios moradores de la comunidad para atender necesidades locales de movilidad. La NEVI-12 describe a los caminos vecinales como "carreteras convencionales básicas que incluyen a todos los caminos rurales no incluidos en las denominaciones anteriores, destinados a recibir el tráfico doméstico de poblaciones rurales, zonas de producción agrícola, accesos a sitios turísticos" (Ministerio de Transporte y Obras Públicas del Ecuador, 2013). Esta categorización permitirá orientar el diseño geométrico y estructural de manera coherente con su jerarquía funcional y contexto rural.

Ilustración 4. Estado actual de la vía en el tramo evaluado

Fuente: Elaboración propia.

4.2 Levantamiento topográfico y análisis preliminar del trazado

Se ejecutó el levantamiento topográfico del tramo en estudio, utilizando coordenadas georreferenciadas (Norte, Este y elevación) siguiendo con el alineamiento tomando puntos cada 20m longitudinalmente y tomando puntos transversales en cada uno de estos con el fin de obtener una faja topográfica. El tramo evaluado corresponde a una vía de

topografía predominantemente llana, con mínimas variaciones altimétricas. Se identificó un alineamiento mayoritariamente recto, interrumpido por cinco curvas distribuidas a lo largo del trayecto. Debido a que la vía fue abierta de manera empírica por los habitantes de la zona, se observa que dichas curvas no fueron diseñadas con base en criterios técnicos, por lo que preliminarmente se presume que los radios de curvatura no cumplen con los valores mínimos exigidos por la NEVI-12 para caminos vecinales. El registro completo de los datos se evidencia en el antes mencionado anexo 1.

4.3 Aforo vehicular

Con el objetivo de caracterizar el flujo vehicular en el tramo rural de la vía Al Quemado, se realizó un aforo manual durante siete días consecutivos, del 31 de marzo al 6 de abril del 2025. El conteo se efectuó en intervalos horarios de 60 minutos, entre las 06:00 y las 18:00, abarcando las horas con mayor actividad vehicular, según observaciones preliminares. Los datos tomados en campo fueron registrados en fichas técnicas, estas se encuentran en el anexo 2.

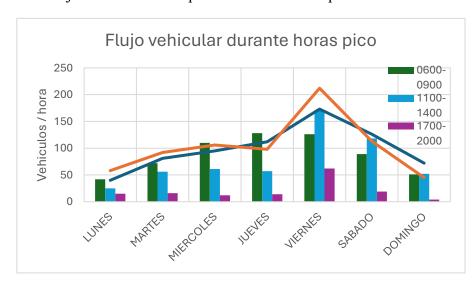

Durante la jornada de aforo, se contabilizó un total de 1.739 vehículos, lo que representa un Tránsito Promedio Diario (TPD) de aproximadamente 249 vehículos/día. En la siguiente tabla se presentan los resultados obtenidos del conteo vehicular realizado en la vía de estudio.

Tabla 8. Registro del conteo semanal

			CONTEO SI	EMANAL			
Tiempo	LUNES	MARTES	MIERCOLES	JUEVES	VIERNES	SABADO	DOMINGO
Hora	31/03/2025	01/04/2025	02/04/2025	03/04/2025	04/04/2025	05/04/2025	06/04/2025
00 - 01	0	0	0	0	0	0	0
01 - 02	0	0	0	0	0	0	0
02 - 03	0	0	0	0	0	0	0
03 - 04	0	0	0	0	0	0	0
04 - 05	0	0	0	0	0	0	0
05 - 06	0	0	0	0	0	0	0
06 - 07	26	29	59	51	74	59	18
07 - 08	8	31	37	46	26	17	18
08 - 09	8	12	14	31	26	13	15
09 - 10	0	0	0	0	0	0	0
10 - 11	0	0	0	0	0	0	0
11 - 12	10	22	22	19	64	77	26
12 - 13	14	16	22	16	57	19	13
13 - 14	1	18	17	22	50	22	13
14 - 15	0	0	0	0	0	0	0
15 - 16	16	25	21	36	42	42	13
16 - 17	26	33	56	26	58	30	15
17 - 18	15	16	12	14	62	19	4
18 - 19	0	0	0	0	0	0	0
19 - 20	0	0	0	0	0	0	0
20 - 21	0	0	0	0	0	0	0
21 - 22	0	0	0	0	0	0	0
22 - 23	0	0	0	0	0	0	0
23 - 24	0	0	0	0	0	0	0
TOTALES	124	202	260	261	459	298	135
			To	OTAL DE 7 D	DIAS AFORO		1739

Fuente: Elaboración propia.

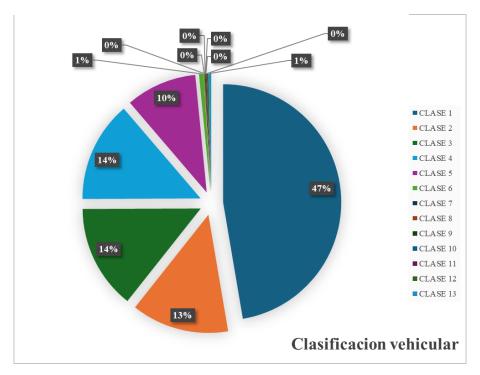
Ilustración 5. Flujo vehicular diario por intervalos de tiempo.

Fuente: Elaboración propia.

4.3.1. Clasificación vehicular

Para el análisis del tipo de tránsito que circula por la vía de estudio, se realizó una clasificación vehicular conforme a lo establecido por el Ministerio de Transporte y Obras Públicas del Ecuador (2013) (Anexo 4). Esta clasificación permitió agrupar los vehículos registrados durante el aforo semanal según sus características físicas y su impacto estructural sobre la vía.

En la tabla se muestra la distribución diaria del total de vehículos registrados, organizados por clases vehiculares, desde motocicletas y automóviles hasta camiones livianos y pesados con distintas configuraciones de ejes.


Tabla 9. Clasificación diaria vehicular

	CLASI					CION	DIARI	A VEI	HICUI	LAR				
DIA DE LA	LIVI	ANOS	_	CAMIONES LIVIANOS		CAMIONES PESADOS								
SEMANA	CLASE 1	CLASE 2	CLASE 3	CLASE 4	CLASE 5	CLASE 6	CLASE 7	CLASE 8	CLASE 9	CLASE 10	CLASE 11	CLASE 12	CLASE 13	TOTAL
	мото	AUTO	2DA	2DB	3-A	4-C	4_0	2S1	2S2	2S3	3S1	3S2	3S3	
Lunes	70	12	17	9	8	4	0	0	0	0	0	4	0	124
Martes	100	33	31	30	1	1	0	0	0	0	0	0	6	202
Miércoles	134	44	34	36	2	6	0	0	2	0	2	0	0	260
Jueves	149	32	38	12	28	0	0	2	0	0	0	0	0	261
Viernes	185	63	64	68	79	0	0	0	0	0	0	0	0	459
Sábado	152	26	37	53	30	0	0	0	0	0	0	0	0	298
Domingo	33	22	27	32	21	0	0	0	0	0	0	0	0	135
TOTAL	823	232	248	240	169	11	0	2	2	0	2	4	6	1739

Fuente: Elaboración propia.

En el siguiente gráfico ilustrativo se puede apreciar de mejor manera las proporciones de la composición del tráfico según la clasificación del tipo de vehículo:

Ilustración 6. Clasificación vehicular

Fuente: Elaboración propia.

4.4 Tráfico Promedio Diario Anual

El Tránsito Promedio Diario Anual (TPDA) es un indicador fundamental en el análisis vial, ya que representa el volumen promedio de vehículos que circulan diariamente por una carretera a lo largo de un año. Se obtiene dividiendo el tránsito total registrado en un año entre 365 días, permitiendo así estimar de forma estandarizada el uso continuo de una vía. Este valor es fundamental para el diseño estructural y funcional de la carretera. (Ministerio de Transporte y Obras Públicas del Ecuador, 2013)

4.4.1. Tráfico promedio diario semanal

El TPDS es el promedio de vehículos que circulan diariamente por una vía durante una semana de observación, este se calcula a partir de la siguiente ecuación:

$$TPDS = \frac{5}{7} \times \sum \frac{Dn}{m_n} + \frac{2}{7} \times \sum \frac{De}{m_e}$$

Donde:

Dn = Número de vehículos en días normales (lunes a viernes)

De = Número de vehículos en días feriados (sábados y domingos)

 $m_n = \text{Número de días normales}$

 $m_e = N$ úmero de días feriado

4.4.2. Tráfico promedio diario anual actual

El Tránsito Promedio Diario Anual (TPDA) es una medida del flujo vehicular promedio diario durante todo un año, este se lo calculó empleando la siguiente ecuación:

$$TPDA \ (actual) = TPDS \times F_m \times F_d$$

Donde:

 F_m = Factor mensual

 F_d = Factor diario

a) Factor mensual

Para determinar el factor mensual se emplea la siguiente tabla elaborada por la MTOP, al haber realizado el aforo vehicular en el mes de abril, el factor mensual es de 1.093.

Tabla 10. Factores mensuales

MES	FACTOR
Enero	1.07
Febrero	1.132
Marzo	1.085
Abril	1.093
Mayo	1.012
Junio	1.034
Julio	1.982
Agosto	0.974
Septiembre	0.923
Octubre	0.931
Noviembre	0.953
Diciembre	0.878

Fuente: Ministerio de Transporte y Obras Públicas.

b) Factor diario

$$Fd = \sum \frac{TPDS}{TD}$$

Donde:

TD = Tránsito diario

El resumen de los resultados se presenta en la siguiente tabla:

Tabla 11. Factor diario por día

FECHA DE CONTEO	DIA DE LA SEMANA	Trafico diario	Trafico promedio dario semanal	Factor estacionalidad menual	Factor diario
		TD (veh/dia)	TPDS	Fm (abril)	Fd
31/03/2025	Lunes	124			2
01/04/2025	Martes	202			1.228
02/04/2025	Miércoles	260			0.954
03/04/2025	Jueves	261	248	1.093	0.95
04/04/2025	Viernes	459			0.54
05/04/2025	Sábado	298			0.832
06/04/2025	Domingo	135			1.837
	TOTAL	1739			1.192

Fuente: Elaboración propia.

4.4.3. Tráfico promedio diario anual asignado

El TPDA asignado es un cálculo previo al tráfico futuro, obtenido a partir del TPDA actual, al cual se le suman incrementos por tráfico generado y desarrollado, con el fin de anticipar la demanda vehicular proyectada. (Barreto et al., 2018)

TPDA (asignado) = TPDA (actual) + Tráf. generado + Tráf. desarrollado

Donde:

Tráfico generado = Corresponde al incremento de vehículos que no utilizaban anteriormente la vía, e incluye viajes que antes no existían, que se hacían mediante transporte público o que tenían otros destinos, pero que ahora se efectúan por la facilidad que ofrece la infraestructura vial mejorada. Es una tasa de incremento que va desde el 5% hasta el 25% del TPDA. (Barreto et al., 2018)

Tráf.generado = 25% TPDA(actual)

Tráfico desarrollado = Representa un crecimiento progresivo del tránsito que no habría ocurrido sin la construcción o mejora del camino. Tráfico desarrollado que genera el 5% de incremento del TPDA. (Barreto et al., 2018)

$$Tráf.desarrollado = 5\% TPDA(actual)$$

4.4.4. Tráfico promedio diario anual proyectado al 2045

Según el Ministerio de Transporte y Obras Públicas del Ecuador (2013) en su normativa para estudios y diseños viales, el período de diseño estructural recomendado para pavimentos nuevos debe ser de 20 años, pudiendo variar entre 10 y 20 años según la categoría funcional de la vía y las condiciones del proyecto. De acuerdo con la clasificación preliminar de nuestra vía como camino vecinal, se escoge un período de vida útil de 20 años. La ecuación se muestra a continuación:

$$TPDA (proyectado) = TPDA (asignado) \times (1 + r)^n$$

Donde:

r = Tasa de crecimiento segun el tipo de vehículo

n = número de años

a) Tasa de crecimiento anual

La tasa de crecimiento anual se ha determinado de la siguiente tabla:

Tabla 12. Tasa de crecimiento según tipo de vehículo

Periodo	Liviano	Bus	Camión
2010-2015	4.49	2.12	3.41
2016-2020	3.99	1.89	3.03
2021-2025	3.60	1.70	2.72
2026-2045	3.27	1.54	2.48

Fuente: Coordinación de factibilidad MTOP

El resumen de los resultados obtenidos del cálculo del Tráfico promedio diario anual proyectado se resumen en la siguiente tabla:

Tabla 13. Resumen de los cálculos del TPDA proyectado

	CLASIFICACION DIARIA VEHICULAR														
FECHA DE	DIA DE LA	LIVIA	ANOS	CAMIONES LIVIANOS			CAMIONES PESADOS								
CONTEO	SEMANA	CLASE 1	CLASE 2	CLASE 3	CLASE 4	CLASE 5	CLASE 6	CLASE 7	CLASE 8	CLASE 9	CLASE 10	CLASE 11	CLASE 12	CLASE 13	TOTAL
		мото	AUTO	2DA	2DB	3-A	4-C	4_0	2S1	2S2	2S3	3S1	3S2	3S3	
31/03/2025	Lunes	70	12	17	9	8	4	0	0	0	0	0	4	0	124
01/04/2025	Martes	100	33	31	30	1	1	0	0	0	0	0	0	6	202
02/04/2025	Miércoles	134	44	34	36	2	6	0	0	2	0	2	0	0	260
03/04/2025	Jueves	149	32	38	12	28	0	0	2	0	0	0	0	0	261
04/04/2025	Viernes	185	63	64	68	79	0	0	0	0	0	0	0	0	459
05/04/2025	Sábado	152	26	37	53	30	0	0	0	0	0	0	0	0	298
06/04/2025	Domingo	33	22	27	32	21	0	0	0	0	0	0	0	0	135
TO	TAL	823	232	248	240	169	11	0	2	2	0	2	4	6	1739
TP	PDS	118	33	35	34	24	2	0	0	0	0	0	1	1	248
% T	TPDS	48%	13%	14%	14%	10%	1%	0%	0%	0%	0%	0%	0%	0%	100.00%
TPDA actual	2025	154	43	46	44	31	3	0	0	0	0	0	1	1	323
% TPD	A actual	48%	13%	14%	14%	10%	1%	0%	0%	0%	0%	0%	0%	0%	100.00%
TPDA asiganado	2025	200	56	60	57	40	4	0	0	0	0	0	1	1	419
% TPDA	asiganado	48%	13%	14%	14%	10%	1%	0%	0%	0%	0%	0%	0%	0%	100.00%
TPDA FUTURO	2045	381	107	81	77	65	7	0	0	0	0	0	2	2	722
COMPO	OSICION	53%	15%	11%	11%	9%	1%	0%	0%	0%	0%	0%	0%	0%	100.00%

Fuente: Elaboración propia.

TPDA = 722 veh/día Número de vehículos pesados al final del periodo de diseño = 234 veh/dia

4.4.5. Clasificación de la vía de acuerdo con el tráfico proyectado

En el marco de la planificación vial nacional, la infraestructura de transporte terrestre se organiza jerárquicamente según la función que cumple cada vía dentro del sistema. El Ministerio de Transporte y Obras Públicas del Ecuador (2013) establece que la red vial ecuatoriana se clasifica en tres niveles: **corredor arterial**, **colectora** y **vecinal**.

- El **corredor arterial** constituye la columna vertebral del sistema, permitiendo la conexión de ciudades principales, puertos, aeropuertos y pasos fronterizos. Son vías de alto volumen de tránsito, estratégicas a nivel nacional.
- Las colectoras actúan como intermediarias, enlazando a las vías vecinales con los corredores viales. Facilitan el acceso a centros poblados de menor jerarquía y zonas de producción.
- Finalmente, las vías vecinales o rurales permiten la accesibilidad directa a comunidades pequeñas, áreas agrícolas y zonas de difícil acceso. Se caracterizan por tener menor jerarquía funcional, menor volumen de tráfico y condiciones estructurales más simples.

Esta clasificación permite definir los criterios de diseño, mantenimiento y jerarquización de inversiones públicas, y es particularmente relevante en proyectos de intervención vial rural. (Ministerio de Transporte y Obras Públicas del Ecuador, 2013)

Una vez realizada la proyección del tráfico para el periodo de diseño seleccionado según normativa (20 años), obtenemos un número de vehículos pesados para el final del periodo de diseño de 234 veh/día y un TPDA de 722 vehículos/día para el año 2045. Según este valor se puede clasificar a la vía por su clase y por su función de acuerdo con las tablas establecidas por la normativa de diseño geométrico del MOP 2003:

Tabla 14. Clasificación del tipo de vía en base a su función y su relación con el TPDA

Función	Clase de carretera (según MTOP)	TPDA (1) (año final de diseño)
Corredor	RI - RII (2)	> 8000
arterial	I	3000 - 8000
arteriar	II	1000 - 3000
	I	3000 - 8000
Calastana	II	1000 - 3000
Colectora	III	300 - 1000
	IV	100 - 300
Vecinal	IV	100 - 300
vecmai	V	< 100
Fuente: Norm	as de diseño geométrico MOP-2003	

Se obtiene una clasificación para la vía como una Colectora clase III.

A su vez también se puede hacer uso de la clasificación dispuesta en la NEVI-12 Volumen 2A para otorgar la siguiente jerarquía:

Tabla 15. Clasificación funcional de las vías en base al TPDA.

Dogovinoión	Clasificación	Tráfico Promedio Diario Anual (TPDA) al año de horizonte			
Descripción	Funcional	Límite Inferior	Límite Superior		
A	AP2	80,000	120,000		
Autopista	AP1	50,000	80,000		
Autovía o Carretera	AV2	26,000	50,000		
Multicarril	AV1	8,000	26,000		
	C1	1,000	8,000		
Carretera de 2 carriles	C2	500	1,000		
Carries	C3	0	500		
Fuente: Ministerio de	e Transporte y O	bras Públicas			

En donde:

- C1 = Equivale a carreteras de mediana capacidad
- C2 = Equivale a carreteras convencionales básicas y camino básico
- C3 = Camino agrícola / forestal

Obteniéndose una clasificación C2

4.5 Estudios de suelos

Para evaluar las condiciones del terreno en el tramo vial Al Quemado, se llevaron a cabo cuatro calicatas distribuidas estratégicamente a lo largo del eje de la vía. Estas excavaciones permitieron obtener muestras representativas del suelo natural, con el propósito de realizar los ensayos de laboratorio necesarios para determinar las propiedades físicas, mecánicas y capacidad de la subrasante. En el anexo 3 se encuentran los valores registrados en la elaboración de los ensayos y los resultados de cada uno de ellos.

La Calicata 1, ubicada en la abscisa 0+200 km, presenta un perfil con variación de materiales finos en toda su profundidad. En el estrato superficial se encontró grava con finos de color café, seguida por un material fino arcilloso de tonalidad café oscuro. En los últimos estratos se encontró un material fino arenoso arcilloso color café rojizo

Tabla 16. Resumen del material de la calicata 1

Profundidad (m)	Material
0.00-0.50	Grava con finos color café
0.50-1.00	Fino arcilloso café oscuro
1.00-1.50	Fino arenoso arcilloso café rojizo
1.50-2.00	Fino arenoso arcilloso café rojizo

Con respecto a la Calicata 2, ubicada en la abscisa 1+200 km, esta presenta un perfil con predominio de materiales finos de carácter limo-arcilloso. En el primer estrato se

identificó grava con finos de color café claro. A continuación, entre 0.50 y 1.00 m, se encuentra un material fino arcilloso de tonalidad café oscuro, seguido por dos estratos consecutivos compuestos por limo arcilloso café rojizo.

Tabla 17. Resumen del material de la calicata 2

Profundidad (m)	Material			
0.00-0.50	Grava con finos color café claro			
0.50-1.00	Fino arcilloso café oscuro			
1.00-1.50	Limo arcilloso café rojizo			
1.50-2.00	Limo arcilloso café rojizo			

Fuente: Elaboración propia

La Calicata 3, ubicada en la abscisa 2+500 km, presenta un perfil con materiales de textura fina y características relativamente homogéneas en profundidad. En la capa superficial se identificó grava con finos color café, seguida por un estrato de material arcilloso rojizo entre los 0.50 y 1.00 m. En los niveles más profundos se observó un suelo fino limoso arcilloso de color café oscuro a gris.

Tabla 18. Resumen del material de la calicata 3

Profundidad (m)	Material				
0.00-0.50	Grava con finos color café				
0.50-1.00	Fino arcilloso rojizo				
1.00-1.50	Fino limoso arcilloso café oscuro/gris				
1.50-2.00	Fino limoso arcilloso café oscuro/gris				

Fuente: Elaboración propia

Por último, la Calicata 4, ubicada en la abscisa 3+100 km, presenta un perfil conformado por materiales de textura mixta. En el estrato superficial se identificó grava con finos color café claro, lo que podría favorecer el drenaje inicial. A continuación, entre 0.50 y 1.00 m, se observó un suelo fino arcilloso arenoso de tonalidad café, seguido por dos estratos con material fino arenoso arcilloso café oscuro.

Tabla 19. Resumen del material de la calicata 4

Profundidad (m)	Material
0.00-0.50	Grava con finos color café claro
0.50-1.00	Fino arcilloso arenoso color café
1.00-1.50	Fino arenoso arcilloso café oscuro
1.50-2.00	Fino arenoso arcilloso café oscuro
Fuente: Elaboración propia	

Una vez recolectadas las muestras, se procedió a la realización de ensayos de laboratorio con el fin de determinar las propiedades físicas y mecánicas más relevantes del material. Estos estudios permiten conocer el comportamiento del suelo frente a las solicitaciones del tránsito, y son esenciales para definir el diseño estructural del pavimento.

Entre los parámetros analizados se encuentra el contenido de humedad natural, que refleja el estado de saturación del suelo al momento del muestreo; así como los límites de Atterberg, específicamente el límite líquido (LL), límite plástico (LP) y el índice de plasticidad (IP), que permiten clasificar la plasticidad y la cohesión del material. Este último se obtiene con la siguiente ecuación:

$$IP = LL - LP$$

También se evaluó la granulometría, a través del porcentaje de material que pasa por los tamices N.º 4, N.º 40 y N.º 200, lo cual brinda una idea del grado de finura del suelo y su comportamiento en estado natural o compactado.

Así mismo, se realizó el ensayo Proctor modificado, con el cual se determinó la humedad óptima de compactación y la densidad seca máxima, parámetros claves para la construcción de capas de suelo adecuadamente compactadas. Finalmente, se ejecutó el ensayo CBR (California Bearing Ratio), que mide la capacidad de soporte del suelo en condiciones controladas y sirve como base para calcular el espesor de las capas del pavimento. Los resultados de todos estos ensayos se recopilan a continuación en una serie de tablas resumen.

Tabla 20. Resumen de resultados de ensayos en la calicata 1

	Calicata 1											
Profundidad (m)		Límite	s de Atte	emberg	Granulometría (% Pasante acumulado)			Clasificación		D.S.M.		%
Profu	%M	LL%	LP%	IP%	#4	#40	#200	AASHTO	SUCS	Kg/m3	Hum. Óptima %	CBR
0.00- 0.50	12.4	N.P.	N.P.	N.P.	64.4	38.38	15.12	A-1-b	SM			
0.50- 1.00	23.52	39.23	30.91	8.32	100	97.41	83.96	A-4	ML			
1.00- 1.50	20.81	24.59	21.2	3.39	100	97.33	72.05	A-4	ML			
1.50- 2.00	27.98	N.P.	N.P.	N.P.	100	67.92	19.89	A-2-4	SM	1928.7	9.66	32

Fuente: Elaboración propia.

Tabla 21. Resumen de resultados de ensayos en la calicata 2

	Calicata 2											
Profundidad (m)		Límites de Attemberg			Granulometría (% Pasante acumulado)			Clasificación		D.S.M.		%
Profu	%M	LL%	LP%	IP%	#4	#40	#200	AASHTO	SUCS	Kg/m3	Hum. Óptima %	CBR %
0.00-0.50	5.44	N.P.	N.P.	N.P.	64.7	41.76	16.9	A-1-b	SM			
0.50-1.00	26.62	37.66	30.24	7.43	100	86.8	70.27	A-4	ML			
1.00-1.50	40.24	55.24	40.17	15.06	100	99.01	96.33	A-7-5	МН			
1.50-2.00	42.44	38.97	26.95	12.02	100	84.59	66.41	A-6	ML	1614.5	19.65	3.15

Fuente: Elaboración propia.

Tabla 22. Resumen de resultados de ensayos en la calicata 3

	Calicata 3											
Profundidad (m)		Límite	s de Atte	mberg		Granulometría (% Pasante acumulado)		Clasificación		D.S.M.		%
Profu	%M	LL%	LP%	IP%	#4	#40	#200	AASHTO	SUCS	Kg/m3	Hum. Óptima %	CBR (
0.00-0.50	8.17	N.P.	N.P.	N.P.	60.5	32.07	13.34	A-1-b	SM			
0.50-1.00	29.9	37.56	27.45	10.11	100	97.05	87.69	A-4	ML			
1.00-1.50	34.66	41.44	29.7	12.27	100	97.02	83.38	A-7-6	ML			
1.50-2.00	18.22	35.43	24.52	10.91	100	98.47	79.94	A-6	ML	1836.6	13.35	5

Fuente: Elaboración propia

Tabla 23. Resumen de resultados de ensayos en la calicata 4

	Calicata 4											
Profundidad (m)		Límite	es de Atte	mberg		Granulometría (% Pasante acumulado)		Clasificación		D.S.M.		%
Profu	%M	LL%	LP%	IP%	#4	#40	#200	AASHTO	SUCS	Kg/m3	Hum. Óptima %	CBR 9
0.00-0.50	5.62	N.P.	N.P.	N.P.	56.7	26.37	11.09	A-1-a	SP-SM			
0.50-1.00	20.81	28.63	23.33	5.3	100	90.35	60.85	A-4	ML			
1.00-1.50	32.25	N.P.	N.P.	N.P.	100	92.6	13.56	A-2-4	SM			
1.50-2.00	33.55	N.P.	N.P.	N.P.	100	76.35	3.33	A-3	SP	1688.4	9.28	27

Fuente: Elaboración propia.

4.6 ESALs

El cálculo de los ejes equivalentes acumulados (ESALs) constituye una etapa fundamental en el diseño estructural de pavimentos. Según Barreto et al., los ESALs representan la suma ponderada de las cargas de todos los vehículos que circularán por la vía, expresadas en función del daño equivalente que produce un eje estándar de 8.2 toneladas.

4.6.1. Carga estimada por eje

Para la determinación de la carga estimada por eje, se recurrió a la clasificación vehicular establecida en la Norma Ecuatoriana Vial NEVI-12 la cual proporciona una tabla técnica (Anexo 4), con los tipos de vehículos y sus configuraciones de ejes, contemplando desde unidades livianas como motocicletas y automóviles, hasta camiones tipo 3S3, que corresponde a un tracto camión de 3 ejes y semirremolque de 3 ejes. Esta clasificación permite asociar a cada tipo vehicular una carga típica por eje, información esencial para el posterior cálculo de los ejes equivalentes, ya que define el impacto relativo que cada vehículo genera sobre la estructura del pavimento durante su vida útil.

4.6.2. Factor equivalencia de carga

Una vez establecida la carga estimada por eje, se procede al cálculo del factor de equivalencia de carga, el cual permite expresar el daño que cada tipo de eje produce sobre el pavimento en relación con un eje estándar de 8.2 toneladas. Para ello, se hace uso de la Tabla 15, extraída de la guía para el diseño de estructuras de pavimento de la AASHTO 1993, que recoge las fórmulas correspondientes para distintos tipos de configuración de

ejes, considerando tanto el número de ruedas como el tipo de distribución de carga (simple, doble, tándem o trídem).

Tabla 24. Relación de cargas por eje para determinar el Eje Equivalente para pavimentos flexibles

Tipo de Eje	Eje Equivalente (EE8.2 tn)
Eje Simple de ruedas simples (EE _{S1})	$EE_{S1} = \left[\frac{P}{6.6}\right]^4$
Eje Simple de ruedas dobles (EE _{S2})	$EE_{S2} = \left[\frac{P}{8.2}\right]^4$
Eje Tándem (1 eje ruedas dobles + 1 eje rueda simple) (EETA1)	$EE_{TA1} = \left[\frac{P}{14.8}\right]^4$
Eje Tándem (2 ejes de ruedas dobles) (EE _{TA2})	$EE_{TA2} = \left[\frac{P}{15.1}\right]^4$
Ejes Trídem (2 ejes ruedas dobles + 1 eje rueda simple) (EE _{TR1})	$EE_{TR1} = \left[\frac{P}{20.7}\right]^{3.9}$
Ejes Trídem (3 ejes de ruedas dobles) (EE _{TR2})	$EE_{TR2} = \left[\frac{P}{21.8}\right]^{3.9}$

Fuente: Guía para el diseño de estructuras de pavimento AASHTO 93

4.6.3. Porcentaje de vehículos

Para efectos del dimensionamiento estructural del pavimento, se ha considerado únicamente el porcentaje correspondiente a vehículos pesados, excluyendo a los vehículos livianos, debido a que estos no generan esfuerzos significativos que comprometan la capacidad estructural de la vía. Esta exclusión es coherente con los lineamientos de diseño establecidos por la AASHTO 1993 y por la Norma Ecuatoriana Vial NEVI-12, donde se reconoce que el aporte al deterioro del pavimento por parte de vehículos livianos es marginal en comparación con el impacto acumulado de vehículos pesados (Ministerio de Transporte y Obras Públicas del Ecuador, 2013). En este sentido, se ha calculado el porcentaje relativo de cada tipo de vehículo de carga con base en el TPDA asignado para el año 2025, tal como se muestra en la tabla 16.

Tabla 25. Porcentaje de vehículos sin livianos

TIPO DE VEHICULO	TPDA Asignado (2025)	Porcentaje de vehículos con livianos	Porcentaje de vehículos sin livianos
Moto	200	0.477327	
Auto	56	0.133652	
2DA	60	0.143198	0.368098
2DB	57	0.136038	0.349693
3-A	40	0.095465	0.245399
4- C	4	0.009547	0.024540
4-O	0	0.000000	0.000000
2S1	0	0.000000	0.000000
2S2	0	0.000000	0.000000
2S3	0	0.000000	0.000000
3S1	0	0.000000	0.000000
3S2	1	0.002387	0.006135
3S3	1	0.002387	0.006135
Total sin vehículos livianos	163		
Total	419	1	1
Fuente: Elaboración propia			

4.6.4. Factor camión

El cálculo del factor camión se obtiene multiplicando el factor de equivalencia de carga, determinado a partir de la (Tabla 15), por el porcentaje relativo de cada tipo de vehículo de carga en el tráfico total (Tabla 16). Matemáticamente, se expresa así:

Factor camión = Factor de equivalencia de carga * % de vehículos

$$Tf = pi * fi$$

Este procedimiento permite convertir cada tipo de vehículo en una contribución ponderada al desgaste del pavimento, considerando tanto su impacto individual como su frecuencia en el flujo vehicular.

4.6.5. Número de ESALs

A continuación, se presenta una tabla resumen en la que se consolidan los principales resultados del análisis del tránsito para efectos del diseño estructural del pavimento donde, finalmente, se calcula el número de ejes equivalentes (ESALs), calculado como el producto del TPDA por el respectivo factor camión.

Tabla 26. Resumen de cálculos previos al ESALs proyectado

				A ESTIN						
Tipo de vehiculo	DIAGRAMA	TPDA Asignado	EJE DELANT ERO	EJE INTERM EDIO	EJE TRASE RO	PESO (Ton)	Factor de equivalencia de carga	Porcentaje vehiculos	Factor Camión	Nro. ESAL's (8.2 Ton)
Moto		200	0.5		0.5	1	6.3535E-05			
Auto		56	1		2.5	3.5	0.02036297			
2DA	2DA 3	60	3		7	10	0.57222232	0.368098	0.21063	12.638039
2DB	10B	57	6		11	17	3.89701793	0.349693	1.36276	77.677370
3-A	20 P	40	6		20	26	3.73633112	0.245399	0.91689	36.675643
4-C	4C 888 1	4	6		24	30	1.8651635	0.024540	0.04577	0.183084
4-O	4-0 octorus 20 88 00 88 00 12	0	12		20	32	7.66397528	0.000000	0	0.000000
2S1	251	0	6	11	11	28	7.1353049	0.000000	0	0.000000
282	282	0	6	11	20	37	6.97461808	0.000000	0	0.000000
283	253	0	6	11	24	41	5.10345046	0.000000	0	0.000000
381	381	0	6	20	11	37	6.97461808	0.000000	0	0.000000
382	382	1	6	20	20	46	6.81393126	0.006135	0.0418	0.041803
383	383	1	6	20	24	50	4.94276364	0.006135	0.03032	0.030324
	TOTAL	419					$T_f = \sum p_i F_i$	2.6081838	TOTAL	127.25

Fuente: Elaboración propia.

Según los factores de equivalencia de carga por cada tipo de ejes planteados por la AASHTO se establece que el número de ejes equivalentes de 8.2 ton o N° de ESALs es de 127.25 los cuales sirven para la proyección para el periodo de diseño que son 20 años.

4.6.6. ESALs para el período de diseño

Para determinar número de ejes equivalentes para el periodo de diseño se empleó la siguiente ecuación que sigue la Metodología AASTHO 93 y NEVI-12:

$$ESAL's = ESAL's_0 \times 365 \times Fd \times Fc \times \left(\frac{(1+i)^n - 1}{i}\right)$$

Donde:

 $ESAL's_0 = Número ESALs inicial$

Fd = Factor de distribución direccional

 $Fc = Factor\ carril$

i = Tasa de crecimiento

n = número de años

En este caso, se adoptó un factor de distribución direccional (Fd) de 0.5, ya que la vía evaluada corresponde a una carretera de doble sentido de circulación, lo cual implica que se asume una distribución simétrica del tránsito entre ambos sentidos. Así mismo, se utilizó un factor de carril (Fc) de 1.0, al tratarse de una vía rural con un solo carril por sentido, donde se espera que el 100 % del tránsito pesado circule por dicho carril. Estos valores se encuentran recogidos en la Tabla 18.

Tabla 27. Factores para el cálculo del ESALs

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado (Fd x Fc)
	1 sentido	1	1.00	1.00	1.00
	1 sentido	2	1.00	0.80	0.80
	1 sentido	3	1.00	0.60	0.60
1 calzada	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
	2 sentidos	3	0.50	0.60	0.30
	2 sentidos	1	0.50	1.00	0.50
2 - 1 1	2 sentidos	2	0.50	0.80	0.40
2 calzadas	2 sentidos	3	0.50	0.60	0.30
	2 sentidos	4	0.50	0.50	0.25

Fuente: Manual de Carreteras- Suelos, Geología, Geotecnia y Pavimentos: Sección suelos y pavimentos - MTC

Aplicando la formula se tiene:

$$ESAL's = 127.25 \times 365 \times 0.5 \times 1 \times \left(\frac{(1+0.05)^{20}-1}{0.05}\right)$$

$$ESAL's = 7.68 \times 10^5$$

De manera análoga también podemos seguir el procedimiento descrito en la NEVI-12 volumen 2B para la transformación del tráfico a un eje equivalente de 120 kN (12 ton), encontrando un número de ejes equivalente a 5.68×10^5 , valor que guarda concordancia con la categorización establecida en la Norma Ecuatoriana Vial NEVI-12, específicamente en la tabla 19. De acuerdo con dicha tabla, este valor ubica la vía dentro de la categoría T3 - Tráfico Medio Bajo. Este procedimiento se pude observar en el Anexo 6.

Tabla 28. Clasificación de tráfico por número acumulado de ejes equivalentes de 12 toneladas (120 kN)

Categorías de tráfico	Designación	Np	Número acumulado de ejes equivalentes de 12t (120kN) en el carril y periodo de proyecto					
Т0	Muy pesado	> 4000	>107					
T1	Pesado	2000-4000	4.10^6 - 10^7					
T2	Medio Alto	800-2000	8.10 ⁵ - 4.10 ⁶					
Т3	Medio Bajo	200-800	8.10 ⁴ - 8.10 ⁵					
T4	Ligero	100-200	104 - 8.104					
Fuente: NEV	Fuente: NEVI 12- Volumen 2B							

Np = número de vehículos pesados al final del período de diseño = 234 veh/día

4.7 CBR de diseño

El ensayo de C.B.R mide la resistencia al corte de un suelo bajo condiciones de humedad y densidad controladas. La elección del valor del C.B.R. para el diseño de la estructura

depende del volumen de tráfico que soportara la vía durante su vida útil el mismo que debe ser cuidadosamente calculado y proyectado.

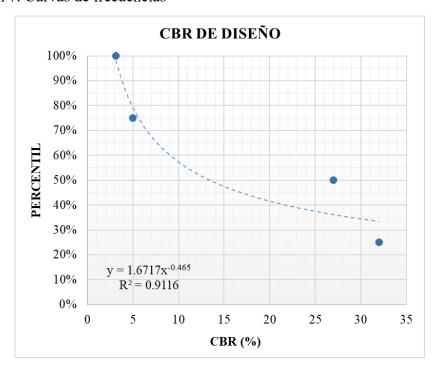
En este proyecto de titulación los métodos empleados para comparar los valores de diseño de CBR fueron los recomendados por el Instituto del Asfalto. Mora L. et al. (2020) menciona que el 60, 75 u 87,5% de los valores individuales de CBR sean iguales o superiores al valor de diseño de CBR, dependiendo del tráfico previsto que circulará sobre el pavimento. Los percentiles para determinar el valor del CBR de diseño según el criterio del Instituto de Asfalto se muestran en la siguiente tabla:

Tabla 29. Percentiles para la selección del valor de CBR de diseño

ESALs	Percentil
$\leq 10^4$	60.00
10^4 - 10^6	75.00
$\geq 10^{6}$	87.50

Fuente: Instituto de Asfalto – Método de diseño para Pavimentos

En el presente trabajo de titulación se ha determinado un ESALs de 7.68x10⁵ por lo tanto el percentil corresponde al 75%


Tabla 30. Percentiles del trabajo de titulación

		Mayor a	Valores	
		menor	mayores o	
ENSAYO	CRB (%)	CRB (%)	iguales	Percentil
1	32	32	1	25%
2	3.15	27	2	50%
3	5	5	3	75%
4	27	3.15	4	100%

Fuente: Elaboración propia

Con estos los valores mostrados en la tabla 23 se construye una gráfica con la cual se podrá obtener la ecuación característica que permitirá la determinación del CBR de diseño.

Ilustración 7. Curvas de frecuencias

Fuente: Elaboración propia.

A la hora de establecer la curva de frecuencias hay que tener en cuenta el valor de R², ya que un valor más alto de este representa un menor error y mayor grado de confianza (en este trabajo se seleccionó una curva de interpolación potencial)

A partir de la ecuación característica de la curva de frecuencia es posible determinar el valor del CBR de diseño:

$$y = 1.6717x^{-0.465}$$
$$0.75 = 1.6717x^{-0.465}$$
$$x = 5.61$$

Como resultado de los ensayos de laboratorio realizados se obtuvo un valor de CBR de diseño igual a 5.61%. Este valor permite clasificar a la subrasante como "subrasante pobre", de acuerdo con la clasificación técnica presentada en la Tabla 31, que categoriza el comportamiento mecánico del suelo en función del rango de CBR. Esta clasificación implica que el suelo natural posee una baja capacidad portante, por lo que requiere un

diseño estructural que considere dicha debilidad, ya sea mediante el aumento del espesor del paquete estructural o a través de procesos de mejoramiento

Tabla 31. Categorización de la subrasante en base a su CBR.

Categoría de subrasante	CBR	
Subrasante inadecuada	CBR < 3%	
Subrasante pobre	De CBR \geq 3% a CBR $<$ 6%	
Subrasante regular	De CBR \geq 6% a CBR $<$ 10%	
Subrasante buena	De CBR \geq 10% a CBR $<$ 20%	
Subrasante muy buena	De CBR \geq 20% a CBR $<$ 30%	
Subrasante excelente	$CBR \ge 30\%$	

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento

Esta condición también influye directamente en la selección del tipo de pavimento, siendo el pavimento flexible la alternativa más adecuada para este tipo de subrasantes.

4.8 Diseño de pavimento flexible

Para el dimensionamiento estructural del pavimento flexible en el tramo de estudio, se ha aplicado el método propuesto por la AASHTO en la Guía para el Diseño Estructural de Pavimentos para Carreteras (1993), este método tiene un enfoque racional por considerar variables clave como el tránsito proyectado, las propiedades del suelo de subrasante, las condiciones climáticas y el nivel de servicio deseado. Este método permite determinar los espesores adecuados de cada capa del pavimento: subbase, base y carpeta de rodadura.

A continuación, se muestra el cálculo de las diversas variables que intervienen en esta etapa del diseño

4.8.1. Determinación de parámetros de confiabilidad

El nivel de confiabilidad representa el grado de seguridad incorporado en el proceso de diseño, con el objetivo de asegurar que la estructura del pavimento cumpla con su desempeño esperado durante todo el período de análisis. (AASHTO, 1993)

A partir del análisis del Tránsito Promedio Diario Anual (TPDA), se determinó que la vía objeto de estudio corresponde a una vía colectora. En función de esta clasificación y

siguiendo los lineamientos establecidos en la Tabla 24, se adoptó un nivel de confiabilidad del 90 %, valor recomendado para vías interurbanas.

Tabla 32. Niveles de confiabilidad sugeridos según el tipo de carretera

Tipo de carreteras	Nivel de confiabilidad recomendado R%	
	Urbana	Interurbana
Autopistas y carreteras importantes	85.0 - 99.9	85.0-99.9
Arterias principales	80.0 - 99.9	75.0-95.9
Colectoras	80.0 - 95.0	75.0-95.0
Locales	50.0 - 80.0	50.0-80.0

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento

Con el valor de confiabilidad adoptado en el diseño se procedió a determinar el valor del factor de desviación normal estándar (Z_R), necesario para representar estadísticamente el nivel de certeza asociado al desempeño estructural esperado del pavimento. De acuerdo con la Tabla 25, para un nivel de confiabilidad del 90 % le corresponde un Z_R de -1.282.

Tabla 33. Desviación estándar (Zr)

Confiabilidad	Desviación normal estándar	
50	0.000	
60	-0.253	
70	-0.524	
75	-0.674	
80	-0.841	
85	-1.037	
90	-1.282	
91	-1.340	
92	-1.405	
93	-1.476	
94	-1.555	
95	-1.645	

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento

Se procede a establecer el valor del error estándar combinado (So), el autor Higuera (2011) menciona que esta variable refleja la dispersión total esperada en el diseño estructural, considerando las incertidumbres asociadas a las condiciones del suelo, el tránsito y los procesos constructivos. Para proyectos de pavimento flexible en construcciones nuevas, se recomienda un rango de So entre 0.40 y 0.50. En este caso, se seleccionó un valor de 0.45, al considerar un nivel de variabilidad intermedio, propio de entornos rurales donde los materiales y condiciones de ejecución presentan cierto grado de incertidumbre.

Tabla 34. Error combinado (So)

Duoyyaata da mayimanta	S_0						
Proyecto de pavimento	Flexible	Rígido					
	0.40-0.50	0.30-0.40					
Construcción nueva	0.45	0.35					
Sobrecapas	0.5	0.4					
1 1 CHTC 02 C /	1 11 ~ 1						

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento.

4.8.2. Determinación del índice de servicio

El índice de serviciabilidad (Serviceability Index) es un parámetro utilizado en el método AASHTO 1993 para representar el nivel funcional o la calidad de servicio que ofrece una vía al usuario, en términos de confort, seguridad y condiciones de rodadura. Este índice se expresa en una escala del 0 al 5, donde 5 representa una condición excelente (pavimento nuevo) y 0 un estado completamente deteriorado e intransitable.

El diseño estructural del pavimento se basa en la pérdida de serviciabilidad admisible a lo largo de su vida útil, la cual se define como la diferencia entre dos valores:

Serviciabilidad inicial (Po): corresponde al estado del pavimento recién construido. El método AASHTO 1993 recomienda un valor típico de Po = 4.2 para pavimentos flexibles y Po = 4.5 para pavimentos rígidos, aunque este puede variar según la calidad de construcción.

 Serviciabilidad final (Pt): representa el límite inferior aceptable de condiciones funcionales antes de requerir una rehabilitación o reconstrucción. Este valor depende del tipo de vía; para carreteras rurales o colectoras, suele adoptarse un Pt entre 2.0 y 2.5.

Tabla 35. Valor de serviciabilidad final

Tipo de vía	Serviciabilidad final						
Autopista	2.5-3.0						
Carreteras	2.0-2.5						
Zonas industriales							
Pavimento urbano industrial	1.5-2.0						
Pavimento urbano secundario	1.5-2.0						
Fuente: AASHTO 93 - Guía para el di pavimento	seño de estructuras de						

La diferencia entre estos valores define la pérdida de serviciabilidad admisible:

$$\Delta PSI = P_0 - P_f$$

$$\Delta PSI = 4.2 - 2 = 2.2$$

Este valor es un componente fundamental de la ecuación de diseño AASHTO 93 y condiciona la capacidad estructural requerida para que el pavimento conserve un nivel de servicio aceptable durante todo su período de diseño.

4.8.3. Módulo resiliente de la subrasante

El módulo resiliente de la subrasante puede ser determinado a partir de correlaciones que han establecido varios autores y con la práctica y el tiempo han sido aceptadas como validas y usadas también en la metodología ASSHTO 93:

Ilustración 8. Correlaciones CBR-Módulo resiliente de la subrasante.

Fórmula de Heukelomn y Foster (1960), AASHTO-93
$$Mr_{(Lb/pulg^2)} = 1500(CBR\%) \qquad \text{Para CBR} < 7.2\%$$
 Concilio Sur Africano de Investigaciones Científicas e Industriales – CSIR – AASHTO-93
$$Mr_{(Lb/pulg^2)} = 3000(CBR\%)^{0.65} \quad \text{Para } 7.2\% < \text{CBR} < 20\%$$
 Fórmula referenciada en la AASHTO ROAD TEST y en la Guía AASHTO-93
$$Mr_{(Lb/pulg^2)} = 4326Ln(CBR\%) + 241$$
 Para material granular CBR > 20%

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento.

Para el cálculo del módulo resiliente de la subrasante se empleó la formula elaborada por Heukelomn y Foster en 1960, esta fórmula es empleada cuando se cumple la siguiente condición:

$$CBR < 7.2\%$$

$$Mr_{(Lb/pulg^2)} = 1500 \; (CBR\%) = 1500 * 5.61 = 8408 \; psi$$

4.8.4. Material para base y sub-base granular

Conforme a lo establecido por el Ministerio de Obras Públicas y Comunicaciones (2002) en el documento "Especificaciones Técnicas Generales para Construcción de Carreteras", donde se menciona que los materiales destinados a la conformación de la sub-base y base granular deben cumplir con ciertos criterios técnicos que aseguren un adecuado comportamiento estructural dentro del paquete del pavimento, se establece los siguientes requerimientos mínimos para los materiales con los que se estructurará el pavimento de este trabajo.

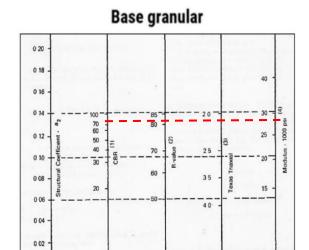
En el caso de la sub-base, el documento establece que los agregados empleados deberán tener un coeficiente de desgaste máximo del 50%, determinado mediante el ensayo de abrasión de Los Ángeles. Así mismo, la fracción que pasa el tamiz Nº 40 debe presentar un índice de plasticidad inferior a 6 y un límite líquido menor de 25. Finalmente, se

especifica que la capacidad de soporte de este estrato debe ser igual o superior a un CBR del 30%.

Respecto a la capa de base, las especificaciones técnicas exigen que el límite líquido de la fracción que pasa el tamiz Nº 40 no supere el 25% y que el índice de plasticidad no exceda el 6%. Además, el porcentaje de desgaste por abrasión de los agregados debe ser menor al 40%, y el CBR mínimo permitido corresponde al 80%.

En coherencia con estas exigencias, por cuestiones de distancia al proyecto y con el fin de minimizar costos de transporte de materiales, en este proyecto se ha optado por recurrir al material extraído de la cantera Beltrán la cual se ubica en el sector La Avanzada en el cantón Santa Rosa provincia de El Oro para su uso como base y sub-base. Las características de estos materiales se muestran a continuación.

Tabla 36. Resumen de los resultados de los ensayos en la Cantera "Beltrán"


	DESCRIPCIÓN DE LA MUESTRA	CLASIFICACIÓN AASHTO	CONTENIDO DE HUMEDAD (%)	LÍMITE LÍQUIDO (%)	LÍMITE PLÁSTICO (%)	ÍNDICE PLÁSTICO	PASANTE TAMIZ #4 (%)	PASANTE TAMIZ #40 (%)	PASANTE TAMIZ #200 (%)	DENSIDAD SECA MÁXIMA DEL SUELO (kg/m³)	CBR (%)
BASE	Material color café, con el 8.69% de humedad natural.	A-2-4	8.69	18.6	17.35	2.87	41.25	22.97	5.97	2210	81.6
SUB-BASE	Material color café, con el 7.25% de humedad natural.	A-2-4	7.25	23.7	19.21	4.49	48.13	22.63	10.57	2131	67.58

Fuente: Artículo "Diseño Y Trazado Geométrico De La Calle Benalcázar En La Ciudad De Huaquillas".

4.8.5. Módulo resiliente MR y el coeficiente estructural a la base y la sub-base

Con los valores de CBR = 81.6% para la base y CBR = 67.58% para la Base, hacemos uso de los monogramas dispuestos por la guía para el diseño de estructuras de pavimento de la AASHTO 1993 para obtener el MR respectivo y luego calcular el coeficiente estructural.

Ilustración 9. Ábacos para determinar el módulo resiliente de la base y sub-base

30

25

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento.

Los coeficientes se calculan con las siguientes ecuaciones:

- Para la base

$$a_2 = 0.249 * \log(E_2) - 0.977$$

0 06

Siendo E2 el módulo resiliente respectivo.

- Para la sub-base

$$a_3 = 0.227 * \log(E_3) - 0.839$$

Siendo E3 el módulo resiliente respectivo.

Una vez aplicadas las ecuaciones se procede a mostrar el resumen los resultados en la tabla 36:

Tabla 37. Módulos resilientes y coeficientes estructurales de la base y sub-base

	CBR (%)	MR (PSI)	a						
Base	100	28500	0.132						
Sub-base	40	18500	0.130						
Fuente: Elaboración propia									

4.8.6. Módulo resiliente de la mezcla asfáltica (E_1) y coeficiente de la capa asfáltica (a_1)

Para la estimación del módulo resiliente de la mezcla asfáltica (E₁), se recurrió a un gráfico que relaciona dicho parámetro con la temperatura del pavimento y la frecuencia de carga aplicada, conforme a lo establecido en la metodología AASHTO 93.

La temperatura de la capa asfáltica se calculó mediante esta ecuación:

$$T_s = (-0.0093 * T_a^2 + 1.569 * T_a - 1.578)(-0.084 * \ln h_s + 1.55)$$

Donde:

 $T_a \rightarrow Temperatura media del áire$

 $h_s \rightarrow Espesor de la capa asfáltica$

La temperatura media del aire se asumió de 23.5 C° y el espesor de la capa asfáltica se tomará de 75 mm, este último es el espesor mínimo basados en los requerimientos de la normativa en base al ESALs calculado previamente (Tabla 37). Aplicando la fórmula se tiene lo siguiente:

$$T_s = (-0.0093 * 23.5^2 + 1.569 * 23.5 - 1.578)(-0.084 * \ln 75 + 1.55)$$

$$T_s = 36 \, {}^{\circ}C$$

Tabla 38. Espesores mínimos de capa asfáltica y base granular

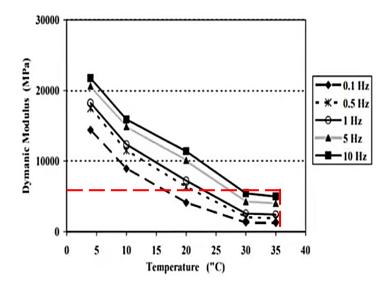
Número de ESALs	Capa asfáltica	Base Granular
Menos de 5x10 ⁴	2.5 cm	10.0 cm
$5x10^4 - 15x10^4$	5.0 cm	10.0 cm
$15x10^4 - 5x10^5$	6.5 cm	10.0 cm
$5x10^5 - 2x10^6$	7.5 cm	15.0 cm
$2x10^6 - 7x10^6$	9.0 cm	15.0 cm
Más de 7x10 ⁶	10.0 cm	15.0 cm

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento

La frecuencia se calcula según la ecuación:

$$f = \frac{v}{2\pi}$$

donde:


 $f \rightarrow$ frecuencia (Hz)

 $v \rightarrow velocidad media de circulación$

Se utilizó una velocidad de circulación de 78 km/h, que equivale a aproximadamente 21.67 m/s. Al aplicar la fórmula, se obtuvo una frecuencia de aproximadamente 12 Hz, la cual excede los valores representados en el gráfico (máximo 10 Hz), pero permite realizar una estimación por extrapolación en la curva correspondiente a 10 Hz para una temperatura determinada, normalmente cercana a 35 °C.

Una vez obtenida la frecuencia de carga aplicada y la temperatura efectiva de la capa asfáltica, ingresamos al gráfico para obtener el módulo resiliente de la capa asfáltica:

Ilustración 10. Gráfico del módulo resiliente de la capa asfáltica.

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento.

Trazando las líneas correspondientes en el gráfico proporcionado por la AASHTO 93 se tiene que:

$$E1 = 6000 MPa = 870227 psi$$

Con este valor aplicamos la ecuación para el cálculo del coeficiente de esta misma capa:

$$a_1 = 0.184 * \ln(E_1) - 1.9547$$

 $a_1 = 0.184 * \ln(870227) - 1.9547$
 $a_1 = 0.5618$

4.8.7. Determinación del coeficiente de drenaje

Con el propósito de estimar de forma adecuada el coeficiente de drenaje para las capas granulares del pavimento, se llevó a cabo un análisis climático basado en los anuarios proporcionados por el Instituto Nacional de Meteorología e Hidrología (INAMHI). A partir del mapa de estaciones meteorológicas, se seleccionaron cuatro estaciones cercanas al área de estudio: M0292, M040, M0185 y M0481. Para cada estación se identificó el año con mayor registro de precipitaciones, del cual se obtuvo el número total de días con lluvia. Con esta información, se calculó el porcentaje de días lluviosos en el año dividiendo dicho número para 365.

Los resultados obtenidos se presentan en la Tabla 37, donde se observa que el porcentaje promedio de días de lluvia al año asciende al 58%, con un total promedio de 213 días lluviosos anuales.

Tabla 39. Resumen de datos de las estaciones meteorológicas

	M0292	M040	M0185	M0481						
Año de mayor precipitación	2010	2010	2010	2013	PROMEDIO					
% días de lluvia al año	42%	75%	63%	52%	58%					
N° de días de lluvia al año	154	274	231	191	213					
Fuente: Elaboración propia.										

El porcentaje de días de lluvia nos indica que la estructura del pavimento estará expuesta a condiciones de humedad próxima a la saturación durante más del 25% del tiempo. En este contexto, y según lo dispuesto en la Tabla 38 de coeficientes de drenaje, se considera que el sistema presenta una condición de drenaje regular, lo que corresponde a un coeficiente de drenaje de 0.80 para el caso de exposición prolongada a la humedad.

De esta manera se obtienen los coeficientes de drenaje:

- m1 = 1 (recomendado para concreto asfaltico)
- m2 = m3 = 0.8 (tabla)

Tabla 40. Coeficientes de drenaje

Porcentaje del tiempo que la estructura del p está expuesta a grados de humedad próxi saturación											
dei drenaje	Menos del 1%	1 - 5%	5 - 25%	Más del 25%							
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20							
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00							
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80							
Pobre	1.15 - 1.05	1.05 - 0.95	0.80 - 0.60	0.60							
Muy malo	1.05 - 0.95	0.95 - 0.75	0.75 - 0.4	0.40							

Fuente: AASHTO 93 - Guía para el diseño de estructuras de pavimento.

En la siguiente tabla podemos observar un resumen de las variables usadas para el diseño de la estructura del pavimento de este proyecto:

Tabla 41. Resumen de las variables para el diseño de pavimentos.

Datos	
W18	767872
R	90%
Zr	-1.282
So	0.45
ΔPSI	2.2
MR capa asfáltica	870227 psi

MR base	28500 psi
MR sub-base	18500 psi
a1	0.5618
a2	0.132
a3	0.13
m1	1
m2	0.8
m3	0.8

Fuente: Elaboración propia.

4.8.8. Número estructural requerido por la capa asfáltica

$$\log(W_{18}) = Z_r * S_0 + 9,36 * \log(SN_1 + 1) - 0,20 + \left[\frac{\log\left(\frac{\Delta PSI}{4,2 - 1,50}\right)}{0,40 + \left(\frac{1094}{(SN_1 + 1)^{5,19}}\right)} \right] + 2,32$$

$$* \log(M_r) - 8,07$$
BASE

$$SN_1 = 1.965$$

4.8.9. Espesor de la capa asfáltica

$$h_1 = \frac{SN_1}{a_1} = \frac{1.965}{0.5618} = 3.5 \ pulg$$

$$h_1 = 3.5 \ pulg$$

$$SN_1^* = a_1 * h_1 = 0.5618 * 3.5 = 1.966$$

4.8.10. Número estructural requerido por la base granular

$$\log(W_{18}) = Z_r * S_0 + 9,36 * \log(SN_2 + 1) - 0,20 + \left[\frac{\log\left(\frac{\Delta PSI}{4,2 - 1,50}\right)}{0,40 + \left(\frac{1094}{(SN_2 + 1)^{5,19}}\right)} \right] + 2,32$$

$$* \log(M_r) - 8,07$$
SUB-BASE

$$SN_2 = 2.311$$

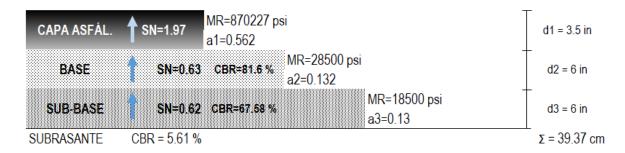
4.8.11. Espesor de la base granular

$$h_2 = \frac{SN_2 - SN_1^*}{a_2 * m_2} = \frac{2.311 - 1.966}{0.13 * 0.8} = 3.3 \ pulg$$

Se adopta el espesor mínimo recomendado en la tabla $38 \rightarrow h_2 = 6 \text{ pulg}$

$$SN_2^* = a_2 * m_2 * h_2 + SN_1^* = 0.13 * 0.8 * 3.5 + 1.966 = 2.6$$

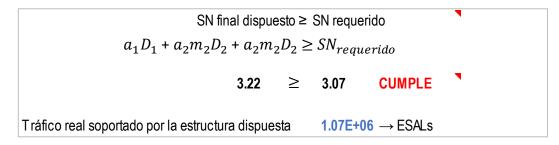
4.8.12. Número estructural requerido por la sub-base granular


$$SN_3 = 3.068$$

4.8.13. Espesor de la sub-base granular

$$h_3 = \frac{SN_3 - SN_2^*}{a_3 * m_3} = \frac{3.068 - 2.6}{0.13 * 0.8} = 4.5 \ pulg$$

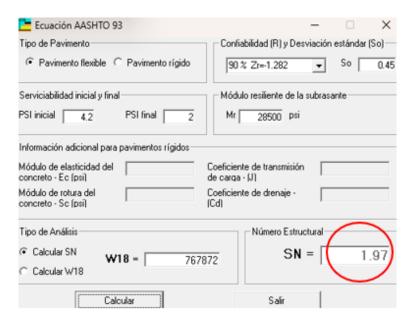
Se adopta el espesor mínimo recomendado en la tabla $38 \rightarrow h_3 = 6 \text{ pulg}$


Ilustración 11. Resumen del diseño de la estructura del pavimento.

Fuente: Elaboración propia.

Con los resultados obtenidos se puede realizar la siguiente comprobación:

Ilustración 12. Verificación SN requerido vs SN dispuesto.



Fuente: Elaboración propia.

4.8.14. Comprobación de los números estructurales mediante software

Como método de verificación para el cálculo de los números estructurales y los espesores de capa se ha hecho uso del software denominado "Ecuación AASHTO 93":

Ilustración 13. Comprobación SN capa asfáltica.

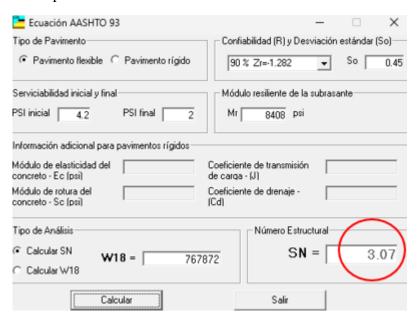

Fuente: Software "Ecuación de la ASSHTO 93".

Ilustración 14. Comprobación SN base.

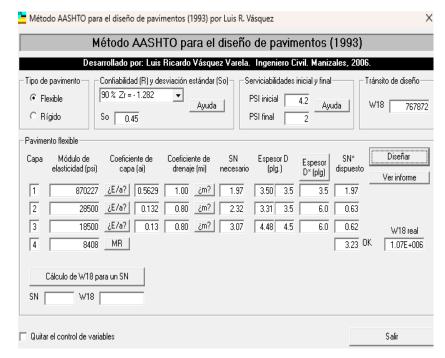

Fuente: Software "Ecuación de la ASSHTO 93".

Ilustración 15. Comprobación SN sub-base.

Fuente: Software "Ecuación de la ASSHTO 93".

Ilustración 16. Resumen de la comprobación del diseño de pavimentos

Fuente: Software "Método AASHTO para el diseño de pavimentos (1993) por Luis R Vázquez.

Ilustración 17. Resumen del informe obtenido del software

```
GUÍA AASHTO PARA EL DISEÑO DE PAVIMENTOS (1993)
Por: Luis Ricardo Vásquez Varela. Ingeniero Civil. Manizales, Colombia. 2005.
PAVIMENTO FLEXIBLE
Confiabilidad
                                            : 90 % Zr = - 1.282
Desviación estándar (So)
                                            : 0.45
PSI inicial
                                           : 4.20
PSI final
Tránsito de diseño (W18)
                                            : 7.679E+005
Módulo resiliente de la subrasante (Mr)-psi- : 8.408E+003
      ......
     Módulo (psi)
                    a ()
       8.702e+005 0.56
                     0.13
       2.850e+004
                              0.80
       1.850e+004
                    0.13
                              0.80
SN necesario: 3.07. SN dispuesto: 3.23
        D (plg)
                 D redon(plg) D*(plg)
        3.50E+00 3.50E+00 3.50E+00
3.31E+00 3.50E+00 6.00E+00
  1.97
                                            1.97
  2.32
                                            0.63
                               6.00E+00
  3.07
        4.48E+00 4.50E+00
                                           0.62
Tránsito real para la estructura dispuesta
```

Fuente: Software "Método AASHTO para el diseño de pavimentos (1993) por Luis R Vázquez.

4.9 Diseño geométrico

Para la definición de los parámetros geométricos de la vía rural objeto de estudio, se aplicaron los lineamientos establecidos por el Ministerio de Transporte y Obras Públicas (MTOP), específicamente los contenidos en la Tabla 42 de clasificación de vías según el Tránsito Promedio Diario Anual (TPDA). Esta normativa establece los rangos recomendables y absolutos para el diseño vial, abarcando tanto aspectos del alineamiento horizontal como vertical. Entre los parámetros considerados se encuentran: la velocidad de diseño, la velocidad de circulación, la distancia de visibilidad de parada y de rebase, el coeficiente de fricción lateral, el radio mínimo de curva, el grado de curvatura, el peralte, la tangente intermedia mínima, el sobreancho, las curvas verticales cóncavas y convexas, el gradiente máximo y mínimo, el ancho de carril, la pendiente transversal o bombeo, la inclinación de taludes, así como los anchos mínimos y recomendables de calzada. Todos estos elementos fueron definidos en concordancia con la categoría funcional de la vía, determinada a partir del TPDA proyectado.

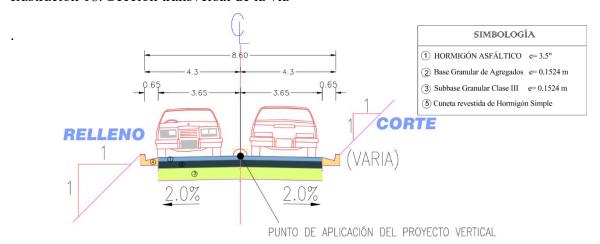
Tabla 42. Valores de diseño recomendados para carreteras de dos carriles y caminos vecinales de construcción

			CLAS						CLAS						CLAS						CLAS						LASE		
NORMAS		3 000						1 000							1 000						- 300							00 TPI	
NORMAG	REC0	MEND	ABLE	AB	SOLU	JTA M	RECO	MENE	ABLE	AB	SOLU	M	RECO	MEND	ABLE	AB	SOLU	TA M	REC0	MEND	ABLE	AB	SOLU	M	RECO	MEND	ABLE	ABSO	OLUTA
Velocidad de diseño (K.P.H.)	110	100	80	100	80	60	100	90	70	90	80	50	90	80	60	80	60	40	80	60	50	60	35	25(9)	60	50	40	50 3	5 25 ⁽⁹⁾
Radio mínimo de curvas horizontales (m)	430	350			210		350	275	160	275			275	210	110		110	42	210	110	75	110	30	20	110	75	42	75 30	0 20(9)
Distancia de visibilidad para parada (m)	180	160	110	160	110	70	160	135	90	135	110	55	135	110	70	110	70	40	110	70	55	70	35	25	70	55	40	55 3	35 25
Distancia de visibilidad para rebasamiento (m)	830	690	565	690	565	415	690	640	490	640	565	345	640	565	415	565	415	270	480	290	210	290	150	110	290	210	150	2101:	50 110
Peralte								MA	XIM) = 10)%									10%	(Para	V > 5	0 K.P	.H.)	8% (Pa	ara V ·	< 50 K	(P.H.)	
Coeficiente "K" para: ⁽²⁾																													
Curvas verticales convexas (m)	80	60	28	60	28	12	60	43	19	43	28	7	43	28	12	28	12	4	28	12	7	12	3	2	12	7	4	7 3	3 2
Curvas verticales cóncavas (m)	43	38	24	38	24	13	38	31	19	31	24	10	31	24	13	24	13	6	24	13	10	13	5	3	13	10	6	10 5	5 3
Gradiente longitudinal ⁽³⁾ máxima (%)	3	4	6	3	5	7	3	4	7	4	6	8	4	6	7	6	7	9	5	6	8	6	8	12	5	6	8	6 8	8 14
Gradiente longitudinal ⁽⁴⁾ mínima (%)															0,5%														
Ancho de pavimento (m)		7,3			7,3			7,0			6,70			6,70			6,00				6,0	0					4,00 (8)	
Clase de pavimento	Car	peta A	sfáltic	ауН	lormig	gón		Car	peta A	Asfälti	ca		Ca	rpe ta	Asfälti	ca o I	D.T.S.	В.	D	T.S.E. I	, Cap Empe		nular	0	Cap	a Grar	ular o	Empe	drado
Ancho de espaldones ⁽⁵⁾ estables (m)	3,0	2,5	2,0	2,5	2,0	1,5	3,0	2,5	2,0	2,5	2,0	1,5	2,0	1,5	1,0	1,5	1,0	0,5		0,60 (
Gradiente transversal para pavimento (%)			2,0						2,0	D					2,0	0				2,5 (C 4,0 (C							4,0		
Gradiente transversal para espaldones (%)		2	,0(0)	- 4,0					2,0 -	4,0					2,0 -	4,0				4,0 (C									
Curva de transición											USE	NSE E	SPIR	ALES	CUAN	NDO:	SEA N	IECE	SARI	0									
Carga de diseño												HS.	- 20 -	44;	HS -	MOP	; Н	S - 2	5										
Puentes Ancho de la calzada (m)		SERA LA DIMENSION DE LA CALZADA DE LA VIA INCLUIDOS LOS ESPALDONES																											
Ancho de Aceras (m) (7)		0,50 m mínimo a cada lado																											
Minimo derecho de via (m)	Según el Art. 3° de la Ley de Caminos y el Art. 4° del Reglamento aplicativo de dicha Ley																												
			LL=	TER	REN	D PLA	ИО	0 = T	ERRE	ио о	NDU	LAD	M C	= TER	RENC	OM C	NTAN	OSC)										

Fuente: Ministerio de Transporte y obras Públicas

Según los cálculos de tránsito previamente realizados, el TPDA proyectado para la vía es de 722 vehículos/día, valor que la ubica dentro de la Clase III, correspondiente a vías con flujos entre 300-1000 vehículos por día. Para esta clase, la normativa establece una velocidad de diseño recomendable de 90 km/h, sin embargo, se decidió adoptar una velocidad más conservadora de 60 km/h. Esta decisión se fundamenta en las condiciones particulares de la vía, la cual es de una calzada con solo un carril por sentido, lo que incrementa los riesgos de operación a velocidades elevadas. Además, dado el uso agrícola predominante en la zona, es común la circulación de vehículos pesados y maquinaria de gran tamaño, lo que justifica aún más la necesidad de reducir la velocidad de diseño para garantizar maniobrabilidad, seguridad y adecuación al entorno funcional. En caso de requerirse una velocidad de diseño de 90 km/h, lo óptimo sería considerar el aumento del número de carriles y, por consiguiente, una modificación en la sección tipo, a fin de mejorar las condiciones de maniobrabilidad, seguridad y fluidez vehicular que permitan operar de forma segura a mayores velocidades.

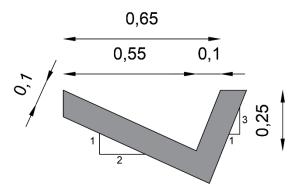
Tras la implementación de la metodología de diseño geométrico, establecida en las Normas de Diseño Geométrico de Carreteras del Ministerio de Transporte y Obras Públicas (2003), se obtuvieron los siguientes resultados:


Tabla 43. Resumen de las variables usadas en el diseño.

Diseño Geométrico Hori	Diseño Geométrico vertical						
Velocidad de Diseño	60 km/h		k				
Velocidad de Circulación	55 km/h	Curvas verticales convexas	28				
Distancia de visibilidad de parada	70 m	Curvas verticales cóncavas	24				
Distancia de rebasamiento	415 m (290)	Gradiente máxima	6%				
Coeficiente de fricción lateral	0.15	Gradiente mínima	0.50%				
Radio mínimo	135 m	Sección Transversa	al				
Grado de curvatura	8°29'	Ancho carril	7m				
Peralte	6%	Bombeo	2%				
Tangente intermedia mínima	70	Corte	1:1				
Sobreancho	0.3 m	Taludes Relleno	1:1				

Fuente: Elaboración propia.

Como se aprecia en la ilustración 18 La sección transversal propuesta considera una calzada de 8.60 metros de ancho, que incluye dos carriles de 3.65 m cada uno (uno en cada sentido) y cunetas laterales de 0.65 m, configurados con una pendiente transversal (bombeo) de 2% hacia ambos lados del eje, lo cual asegura un adecuado drenaje superficial y seguridad en la operación del camino, incluso en zonas de visibilidad limitada o en curvas.


Ilustración 18. Sección transversal de la vía

Fuente: Elaboración propia.

Se ha seleccionado una cuneta de sección triangular con revestimiento de hormigón. Esta tipología ha sido elegida por su eficiencia hidráulica, ya que permite el escurrimiento de caudales con velocidades relativamente altas sin comprometer la estabilidad del cauce, minimizando así el riesgo de erosión del lecho y los taludes. El uso de revestimiento rígido, como el hormigón, garantiza durabilidad, reduce los requerimientos de mantenimiento y mejora el comportamiento estructural ante solicitaciones hidráulicas variables. A continuación, se detalla la geometría de la cuneta diseñada para el sistema de drenaje longitudinal del proyecto vial.

Ilustración 19. Diseño de cuneta

Fuente: Elaboración propia.

La elaboración de los planos y el trazado geométrico de la vía en el software AutoCAD Civil 3D se realizó a partir de los datos obtenidos en el levantamiento topográfico del terreno. Esta información, compuesta por coordenadas, cotas y detalles del relieve, fue procesada para generar un modelo digital del terreno (MDT), que permitió definir con

precisión el alineamiento horizontal y vertical de la vía. A partir de este modelo, se desarrollaron perfiles longitudinales, secciones transversales y el diseño de la rasante, los cuales sirvieron como base para la elaboración de los planos constructivos y la obtención de las cantidades de obra.

A continuación, se presentan los planos técnicos elaborados, en los cuales se refleja la aplicación detallada de los parámetros geométricos definidos, cumpliendo con los criterios de funcionalidad, seguridad y adaptabilidad para una vía rural de doble sentido con un volumen de tránsito moderado, además, también se presenta los volúmenes de movimiento de tierras correspondientes en el Anexo 7.

5. CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- La revisión bibliográfica y normativa permitió identificar los parámetros técnicos más relevantes para el diseño geométrico de vías rurales, tomando como referencia principal los lineamientos establecidos por el Ministerio de Transporte y Obras Públicas (MTOP) y la Norma Ecuatoriana Vial NEVI-12. Así mismo, este análisis permitió determinar que la metodología más adecuada para el diseño estructural del pavimento en este tipo de proyectos corresponde al método AASHTO 93, dado su enfoque integral en la evaluación del tránsito, características del suelo y niveles de serviciabilidad esperados
- A través de los estudios técnicos realizados, entre ellos el levantamiento topográfico, los ensayos de laboratorio del suelo y los aforos vehiculares, se diagnosticó de manera integral el estado actual del tramo Al Quemado (0+000 a 3+187). El levantamiento permitió identificar deficiencias geométricas, como pendientes inadecuadas y curvas con radios menores a los mínimos establecidos por la normativa, lo cual compromete la funcionalidad y seguridad vial, especialmente en temporada invernal.

Mediante el aforo vehicular se determinó un TPDA de 722 vehículos/día, proyectado a 20 años, obteniendo una carga acumulada de 7.68 × 10⁵ ESALs, que representa la demanda estructural que la vía deberá soportar. Por su parte, los ensayos de laboratorio evidenciaron que la subrasante está compuesta principalmente por suelos de tipo arcilloso (ML) y arenoso (SM-SP), con una capacidad portante limitada, reflejada en un CBR promedio de 5.61 %, clasificándola como "muy mala" según los criterios de la NEVI-12. Esta descompensación entre la demanda futura y la resistencia actual del suelo justifica la necesidad de una estructura de pavimento que garantice un comportamiento funcional y duradero a lo largo del periodo de diseño.

• En respuesta a las deficiencias identificadas durante la evaluación técnica, se planteó una solución integral que abarca tanto el diseño estructural como el geométrico del tramo vial. En lo estructural, se optó por un pavimento flexible, en función de las características del terreno y del tránsito proyectado. Esta elección se sustenta en el bajo comportamiento mecánico de la subrasante, con un CBR promedio de 5.61 %,

lo que hace más recomendable el uso de estructuras flexibles por su capacidad de adaptación a suelos débiles. Además, el volumen de tránsito identificado no justifica una inversión en pavimentos rígidos. Dado que se trata de una vía rural de bajo volumen con restricciones presupuestarias y necesidad de mantenimiento progresivo, el pavimento flexible constituye una alternativa eficiente, alineada con las recomendaciones de la Norma NEVI-12.

El paquete estructural propuesto está conformado por 3.5 pulgadas (8.89 cm) de carpeta asfáltica, 15.24 cm de base granular y 15.24 cm de subbase, asegurando la capacidad portante requerida y una vida útil acorde al horizonte de diseño. Desde el punto de vista geométrico, el nuevo trazado considera una velocidad de diseño de 60 km/h, coherente con la clasificación funcional de la vía y las condiciones topográficas del entorno. Se corrigieron las pendientes excesivas y se rediseñaron las curvas horizontales, incorporando radios mínimos de hasta 135 m, lo que mejora significativamente la seguridad vial y la comodidad de circulación para los usuarios.

- Se logró integrar adecuadamente los resultados de campo con herramientas tecnológicas como Autocad Civil 3D, lo cual facilitó la obtención precisa de perfiles, secciones y cubicaciones. Esta sinergia entre lo técnico y lo digital permitió desarrollar una propuesta integral de trazado geométrico que mejora significativamente las condiciones de transitabilidad y promueve el desarrollo productivo del sector rural.
- Finalmente, el proyecto no solo responde a necesidades técnicas, sino también sociales y económicas. Al mejorar las condiciones de la vía Al Quemado, se favorece la conectividad rural, se optimiza el transporte de productos agrícolas y se fortalece el vínculo entre la zona productiva y la cabecera cantonal de Santa Rosa.

Recomendaciones

- Complementar el diseño con un estudio hidrológico detallado, debido a la presencia de pequeños cauces que, en temporada invernal, generan escorrentías que han afectado históricamente la vía. Este análisis permitirá definir obras de drenaje adecuadas que prevengan erosiones y socavamientos.
- Realizar una evaluación de la señalización vertical y horizontal existente, así como una propuesta de señalización completa acorde con la NEVI-12, a fin de garantizar la seguridad vial en condiciones de visibilidad adversa y durante el tránsito nocturno.
- Incorporar estudios ambientales y simulaciones de tráfico en futuras investigaciones, con el fin de evaluar los posibles impactos sobre el entorno y validar los escenarios de crecimiento vehicular mediante modelos de simulación, lo que reforzaría la planificación a largo plazo.
- Elaborar un presupuesto referencial y un cronograma de ejecución de obra, con base en los volúmenes de movimiento de tierra y las cantidades de obra obtenidas, para facilitar la toma de decisiones por parte de las autoridades competentes en caso de implementación del proyecto.
- Diseñar un sistema de monitoreo y evaluación del desempeño vial, basado en indicadores clave como deterioro superficial, tiempos de viaje y nivel de servicio, que permita realizar ajustes técnicos futuros y planificar mantenimientos preventivos de manera oportuna.
- Gestionar un mayor respaldo institucional para trabajos futuros, especialmente en zonas rurales, donde el levantamiento de información en campo puede verse limitado por la falta de autorización de propietarios privados. La participación de autoridades locales facilitaría el acceso a predios y permitiría obtener fajas topográficas más amplias y precisas para posibles ampliaciones de vía.

BIBLIOGRAFÍA

- AASHTO. (1993). Guia para el diseño de estructuras de pavimento (2nd ed.).
- Arias, F. (2012). El proyecto de investigación: Introducción a la metodología científica (6th ed.).
- Barreto, S., Banguera, J., & Córdova, J. (2018). Análisis comparativo de Ejes Equivalentes obtenidos mediante método Aashto 93 y los proporcionados por pesaje en balanza fija de vehículos. *Universidad y Sociedad*, 10(1). http://rus.ucf.edu.cu/index.php/rus
- Cantisani, G., & Del Serrone, G. (2020). Procedure for the Identification of Existing Roads Alignment from Georeferenced Points Database. *Infrastructures*, 6(1), 2. https://doi.org/10.3390/infrastructures6010002
- Caro, S., & Caicedo, B. (2017). Tecnologías para vías terciarias: perspectivas y experiencias desde la academia. *Revista de Ingeniería*, 45(45), 12–21. https://doi.org/10.16924/revinge.45.3
- Castro, G., & Castro, L. (2020). Aplicación práctica del método AASHTO-93 para el diseño de pavimento rígido. *Polo Del Conocimiento*, *5*(09), 640–663. https://doi.org/10.23857/pc.v5i9.1717
- Galarza, G., Gaona, C., Romero, E., & Sánchez, C. (2024). Procedure for the evaluation of the geometric design of mountain roads, with a focus on safety. *Revista Ciencia y Construcción*, 5(2). https://rcc.cujae.edu.cu/index.php/rcc/article/view/233
- García-Ramírez, Y. D., & Alverca, F. (2019). Calibración de ecuaciones de velocidades de operación en carreteras rurales montañosas de dos carriles: caso de estudio ecuatoriano. *Revista Politécnica*, 43(2), 37–44. https://doi.org/10.33333/rp.vol43n2.1012
- García-Ramirez, Y., Zárate, B., Segarra, S., & Gonzalez, J. (2017). Variación diaria y horaria de la velocidad de operación en carreteras rurales de dos carriles en el cantón Loja. *Revista Politécnica*, 40(1).

- Garnaik, M. M., Giri, J. P., & Panda, A. (2023). Impact of highway design on traffic safety: How geometric elements affect accident risk. *Ecocycles*, *9*(1), 83–92. https://doi.org/10.19040/ecocycles.v9i1.263
- Gil-Mora, J. E., & Sosa-Aguirre, B. (2021). Medidas correctivas a los impactos ambientales en la carretera Cusco Quillabamba: Tramo Abra de Málaga-Alfamayo. *Ambiente, Comportamiento y Sociedad, 4*(2), 31–73. https://doi.org/10.51343/racs.v4i2.831
- Gobierno Autónomo descentralizado. (2019). Plan de Desarrolloy Ordenamiento Territorial del cantón Santa Rosa 2019-2023.
- Gobierno Autónomo Descentralizado Provincial de El Oro. (2019). *Plan de Desarrolllo y Ordenamiento Territorial de la Provincia de El Oro*. https://www.eloro.gob.ec/
- González, J., León, B., Sánchez, C., & Medina, Y. (2023). Methodology for the sustainable geometric design Of road axes in inter-cantonal roads. *Revista Ciencia y Construcción*, 4(3), 30–44.
- Hernández-Rodríguez, A. A., Argüelles-Pascual, V., & Palacios, R. H. (2021). Métodos empíricos de la investigación. *Publicación Semestral*, *9*(17), 33–34. https://repository.uaeh.edu.mx/revistas/index.php/huejutla/issue/archive
- Higuera, C. (2011). *Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras* (1st ed., Vol. 2). Universidad Pedagógica y Tecnológica de Colombia.
- Lopes, E., Menezes, R., & Silva, T. (2019). Comparative study of software for road geometric design. *Acta Scientiarum*, *41*. https://doi.org/10.4025/actascitechnol.v41i1.36959
- Maghrour Zefreh, M., & Török, Á. (2020). Distribution of traffic speed in different traffic conditions: An empirical study in budapest. *Transport*, *35*(1), 68–86. https://doi.org/10.3846/transport.2019.11725
- Maher, J., & Ebrahimi, S. (2019). Experimental and theoretical study of pavements in the base and sub-base course in single-layer and multi-layer. *International Journal of*

- Engineering and Technology, 11(1), 102–109. https://doi.org/10.21817/ijet/2019/v11i1/191101060
- Ministerio de Obras Públicas y Comunicaciones. (2002). Especificaciones generales para la construcción de caminos y puentes.
- Ministerio de Transporte y Obras públicas del Ecuador. (2013). *Norma Ecuatoriana Vial* (NEVI-12): Norma para estudios y diseños viales. (Vol. 2A).
- Montaño De León, J. A., Zúñiga De León, D., & Rodriguez Esparza, A. (2015). Consideraciones, procedimientos y conceptos para la realización de un proyecto geométrico de carreteras. *CULCyT: Cultura Científica y Tecnológica*, *12*(57), 42–52. https://dialnet.unirioja.es/servlet/articulo?codigo=7137425
- Mora L., O., Murillo A., M., Rosania A., T., Castañeda A., A., Pinto C., R., & Padilla M., A. (2020). Analysis of CBR design value selection methods on flexible pavement design: Colombia case study. *International Journal of Engineering & Technology*, 9(2), 509–514. https://doi.org/10.14419/ijet.v9i2.30628
- Muhammed, A. Y., Sulaiman, S., Bello, S., Abdulkadir, H., & Baba, S. U. (2023). Resilient infrastructure:Impacts of roads on population and economic growth in Kaduna metropolis, Kaduna state, Nigeria. *Fudma Joutnal of Sciences*, 7(3), 127–132. https://doi.org/10.33003/fjs-2023-0703-1856
- Narvaez, L. (2017). Vías terciarias: Motor del desarrollo económico rural. *Revista de Ingeniería*, 47(45), 80–87. https://doi.org/10.16924/revinge.45.11
- Navarro, E. (2023). Diseño geométrico de la vía Arenillas-Intersección Ingreso La Cuca, cantón Arenillas [Trabajo de titulación]. Universidad Técnica de Machala.
- Oñate-Bastidas, C. E., & Calero-Valenzuela, C. A. (2023). Parámetros que definen la velocidad de diseño de carreteras en terreno ondulado. *Respuestas*, 28(2). https://doi.org/10.22463/0122820x.2792
- Paikun, P., Andriani SP, R. W., Destaman, F., & Winardi, D. (2021). Road geometric feasibility in road Sagaranten-Tegalbuleud Km.BDG 175 + 100. *ASTONJADRO*, 10(1), 117–134. https://doi.org/10.32832/astonjadro.v10i1

- Paladines, B., Oyola, E., Carrión, L., & Romero, E. (2022). Design and geometric layout of Benalcázar street in the city of Huaquillas. *Revista Ciencia y Construcción*, *3*(4), 55–64.
- Peñafiel, J., Pavón, P., & Medina, Y. (2022). Análisis de la capacidad vial y nivel de servicio de las vías de ingreso De la ciudad de Machala. *Revista Ciencia y Construcción*, 3(4), 65–76.
- Reyes, P., Oyola, E., Carrión, L., & Romero, E. (2022). Diseño y trazado geométrico delacalle Benalcázar en la ciudad de Huaquillas. *Revista Ciencia y Construcción*, 3(4), 55–64.
- Rodriguez, Y., García, R., & Gálvez, L. E. (2023). Procedimiento para determinar la velocidad promedio de viaje en carreteras rurales de dos carriles, Cuba. *Revista de Arquitectura* e Ingeniería, 17(1). https://dialnet.unirioja.es/servlet/articulo?codigo=8977779
- Rogel, B., Oyola, E., Carrión, L., & Romero, E. (2023). Ampliación y diseño geométrico de la vía alterna S/N, que comprende desde el sitio El Corral Viejo hasta la parroquia El Retiro. *Revista Ciencia y Construcción*, 4(2). https://rcc.cujae.edu.cu/index.php/rcc/article/view/148
- Surichaqui, F., Manrique, A., Ore, M., & Quichca, W. (2023). Estudio comparativo del diseño geométrico de carretera con levantamiento topográfico (estación total, modelo digital Google-earth), en la provincia de Angaraes. *Revista Científica Ciencias Ingenieriles*, 3(1), 01–10. https://doi.org/10.54943/ricci.v3i1.220
- Vásquez, J., Sánchez, Y., Mendieta, C., & Carrion, L. (2023). Modelo De Optimización De Estructuras Viales. *Revista Ciencia y Construcción*, 4(2), 6–15.
- Virsis, E., Paeglitis, A., & Zarins, A. (2020). Road design on low bearing capacity soils. *Baltic Journal of Road and Bridge Engineering*, 15(3), 19–33. https://doi.org/10.7250/bjrbe.2020-15.481
- Vivek Gajanan Sukalkar, Kunal Pawar, & Dr. P. L. Naktode. (2022). A Study and Design of Two Lane with Paved Shoulder in Green Filed Corridor, By Using Civil 3D.

- International Journal of Scientific Research in Science, Engineering and Technology, 202–211. https://doi.org/10.32628/ijsrset229347
- Wang, C., Quddus, M. A., & Ison, S. G. (2013). The effect of traffic and road characteristics on road safety: A review and future research direction. *Safety Science*, 57, 264–275. https://doi.org/10.1016/j.ssci.2013.02.012
- Yu, L., Peifeng, S., Miaomiao, L., Zhanping, Y., & Mohan, Z. (2020). Review on evolution and evaluation of asphalt pavement structures and materials. *Journal of Traffic and Transportation Engineering (English Edition)*, 7(5), 573–599. https://doi.org/10.1016/j.jtte.2020.05.003
- Zhangallimbay, D., & Ordoñez, M. (2022). Eficiencia en la producción agrícola: un análisis del efecto de la construcción de carreteras en zonas productivas del Ecuador. *Revista Cuestiones Económicas*, 32(1), 60–78. https://doi.org/10.47550/RCE/32.1.3

ANEXOS

Anexo 1: Tabla de registro de puntos topográficos

PUNTO	NORTE	ESTE	ELEVACIÓN	DESCRIPCIÓN
1	9617450.19	617565.306	20	NO
2	9617465.689	617555.613	20	REF 1
3	9617467.532	617554.46	20.018	REF 2
4	9617467.538	617554.456	20.018	ТОРО
5	9617422.965	617571.916	20.487	ASFALTO
6	9617412.361	617576.707	20.315	ASFALTO
7	9617413.035	617577.641	20.497	LIND
8	9617416.938	617583.107	20.364	LIND POSTE
9	9617417.778	617585.083	20.23	ТОРО
10	9617429.627	617578.395	19.907	ASFALTO
11	9617428.77	617576.826	19.948	ASFALTO
12	9617428.581	617576.268	20.228	ТОРО
13	9617425.84	617570.276	20.448	ТОРО
14	9617424.872	617568.88	20.288	ASFALTO
15	9617435.339	617562.885	20.198	ASFALTO
16	9617436.419	617564.193	20.336	ТОРО
17	9617439.839	617569.828	20.152	LIND
18	9617440.113	617570.291	20.001	ТОРО
19	9617440.796	617571.949	19.897	ASFALTO
20	9617451.622	617553.635	19.922	ASFALTO
21	9617452.416	617555.121	20.167	LIND
22	9617456.085	617560.99	20.024	LIND

23	9617458.463	617564.1	19.442	ТОРО
24	9617474.752	617556.544	19.114	ASFALTO
25	9617473.848	617554.136	19.579	ASFALTO
26	9617472.766	617552.042	20.007	ТОРО
27	9617469.751	617546.09	20.168	VIA
28	9617469.089	617544.336	19.924	VIA
29	9617457.997	617559.912	20.002	VIA
30	9617456.169	617562.683	19.883	LIND
31	9617454.549	617566.978	19.791	LIND
32	9617456.739	617566.963	19.445	VIA
33	9617457.355	617573.138	19.556	VIA
34	9617455.057	617573.33	19.653	LIND
35	9617449.772	617575.298	19.528	LIND
36	9617448.59	617575.959	19.411	VIA
37	9617446.906	617571.837	19.59	VIA
38	9617448.108	617570.353	19.796	ASFALTO
39	9617446.437	617568.352	19.923	LIND
40	9617443.848	617567.508	20.122	VIA
41	9617460.357	617586.466	19.51	VIA
42	9617458.243	617586.921	19.496	LIND
43	9617453.97	617588.643	19.533	LIND
44	9617452.535	617589.584	19.443	VIA
45	9617455.96	617603.6	19.489	VIA
46	9617457.676	617603.274	19.498	LIND
47	9617461.916	617603.267	19.494	LIND
48	9617463.845	617602.767	19.659	VIA

				T
49	9617467.926	617620.021	19.447	VIA
50	9617465.955	617620.531	19.39	LIND
51	9617462.019	617621.318	19.423	PI 2
52	9617460.387	617621.37	19.259	PI 1AT
53	9617470.777	617646.646	19.415	LIND
54	9617450.189	617565.304	20.003	VIA
55	9617471.365	617635.796	19.399	VIA
56	9617469.243	617636.456	19.376	LIND
57	9617465.331	617637.578	19.342	LIND
58	9617464.022	617637.705	19.315	VIA
59	9617476.601	617654.852	19.491	VIA
60	9617474.018	617655.683	19.35	LIND
61	9617469.592	617656.608	19.323	LIND
62	9617468.591	617656.913	19.372	VIA
63	9617479.968	617670.924	19.376	VIA
64	9617478.03	617671.125	19.405	LIND
65	9617473.609	617672.163	19.389	POSTE
66	9617472.516	617672.621	19.391	VIA
67	9617483.354	617685.716	19.524	VIA
68	9617481.273	617686.022	19.488	LIND
69	9617477.329	617686.887	19.413	LIND
70	9617476.293	617687.102	19.454	VIA
71	9617486.856	617701.027	19.507	VIA
72	9617485.162	617701.512	19.53	LIND
73	9617480.84	617702.428	19.491	LIND
74	9617479.806	617702.707	19.509	VIA
-	-	<u> </u>	-	•

75	9617490.53	617716.124	19.544	VIA
76	9617488.598	617716.692	19.587	VIA
77	9617483.939	617717.498	19.505	LIND
78	9617482.788	617717.873	19.516	VIA
79	9617493.962	617731.444	19.498	VIA
80	9617491.953	617731.654	19.571	LIND
81	9617487.663	617732.824	19.527	PI 3
82	9617486.338	617732.575	19.522	PI 2AT
83	9617504.09	617784.374	19.848	LIND
84	9617470.777	617646.651	19.414	VIA
85	9617500.245	617758.105	19.596	VIA
86	9617498.448	617758.768	19.616	LIND
87	9617494.341	617760.207	19.66	LIND
88	9617493.091	617760.453	19.736	VIA
89	9617504.361	617776.036	19.671	VIA
90	9617502.444	617776.77	19.758	LIND
91	9617498.371	617777.443	19.74	LIND
92	9617496.862	617777.524	19.794	VIA
93	9617507.874	617790.841	19.811	VIA
94	9617506.253	617791.234	19.874	LIND
95	9617502.053	617792.17	19.877	LIND
96	9617500.584	617792.612	19.752	VIA
97	9617504.584	617807.942	19.598	VIA
98	9617505.691	617807.343	19.839	LIND
99	9617509.666	617806.5	19.777	LIND
100	9617511.069	617806.058	19.804	VIA

101 9617508.717 617823.928 19.73 VIA 102 9617509.636 617823.546 19.884 LIND LIND 103 9617513.379 617822.572 19.903 LIND 104 9617514.943 617821.616 20.113 VIA 105 9617511.646 617838.115 19.541 VIA 106 9617512.718 617837.869 19.75 LIND 107 9617516.79 617836.909 19.852 VIA 108 9617518.534 617836.015 19.925 VIA 109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.163 20.306 PI 3AT 112 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617864.642 19.953 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617522.954 617879.619 19.659 LIND 120 9617528.053 617879.208 19.972 LIND 122 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA 123 9617526.74 617900.307 19.469 VIA 124 9617526.74 617900.307 19.469 VIA 124 9617526.74 617900.307 19.469 VIA 124 9617526.74 61790					
103 9617513.379 617822.572 19.903 LIND 104 9617514.943 617821.616 20.113 VIA 105 9617511.646 617838.115 19.541 VIA 106 9617512.718 617837.869 19.75 LIND 107 9617516.79 617836.909 19.852 VIA 108 9617518.534 617836.909 19.852 VIA 109 9617518.534 617836.909 19.852 VIA 109 9617518.534 617836.909 19.852 VIA 109 9617518.534 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.568 19.868 PI 4 112 9617522.173 617850.568 19.847 VIA 113 9617524.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617522.314 </td <td>101</td> <td>9617508.717</td> <td>617823.928</td> <td>19.73</td> <td>VIA</td>	101	9617508.717	617823.928	19.73	VIA
104 9617514.943 617821.616 20.113 VIA 105 9617511.646 617838.115 19.541 VIA 106 9617512.718 617837.869 19.75 LIND 107 9617516.79 617836.909 19.852 VIA 108 9617518.534 617836.015 19.925 VIA 109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.163 20.306 PI 3AT 112 9617522.173 617850.163 20.306 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617525.314 617864.81 19.867 LIND 117 9617525.	102	9617509.636	617823.546	19.884	LIND
105 9617511.646 617838.115 19.541 VIA 106 9617512.718 617837.869 19.75 LIND 107 9617516.79 617836.909 19.852 VIA 108 9617518.534 617836.015 19.925 VIA 109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.568 19.868 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.938 19.664 VIA 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617522.954 617879.619 19.659 LIND 120 9617528.053 617879.208 19.972 LIND 122 9617528.75	103	9617513.379	617822.572	19.903	LIND
106 9617512.718 617837.869 19.75 LIND 107 9617516.79 617836.909 19.852 VIA 108 9617518.534 617836.015 19.925 VIA 109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 111 9617522.173 617850.163 20.306 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617528.053 617879.208 19.972 LIND 122 9617528.752	104	9617514.943	617821.616	20.113	VIA
107 9617516.79 617836.909 19.852 VIA 108 9617518.534 617836.015 19.925 VIA 109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.163 20.306 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.938 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	105	9617511.646	617838.115	19.541	VIA
108 9617518.534 617836.015 19.925 VIA 109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.163 20.306 PI 3AT 112 9617522.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.938 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617523.201 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	106	9617512.718	617837.869	19.75	LIND
109 9617515.452 617852.059 19.779 LIND 110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.163 20.306 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	107	9617516.79	617836.909	19.852	VIA
110 9617519.997 617850.568 19.868 PI 4 111 9617522.173 617850.163 20.306 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617889.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	108	9617518.534	617836.015	19.925	VIA
111 9617522.173 617850.163 20.306 PI 3AT 112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	109	9617515.452	617852.059	19.779	LIND
112 9617527.011 617884.484 19.628 LIND 113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	110	9617519.997	617850.568	19.868	PI 4
113 9617504.093 617784.37 19.847 VIA 114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	111	9617522.173	617850.163	20.306	PI 3AT
114 9617518.155 617865.938 19.664 VIA 115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	112	9617527.011	617884.484	19.628	LIND
115 9617519.263 617865.533 19.796 LIND 116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	113	9617504.093	617784.37	19.847	VIA
116 9617523.201 617864.81 19.867 LIND 117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	114	9617518.155	617865.938	19.664	VIA
117 9617525.314 617864.642 19.953 VIA 118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	115	9617519.263	617865.533	19.796	LIND
118 9617521.675 617880.133 19.778 VIA 119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	116	9617523.201	617864.81	19.867	LIND
119 9617522.954 617879.619 19.659 LIND 120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	117	9617525.314	617864.642	19.953	VIA
120 9617525.896 617879.175 19.633 POSTE 121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	118	9617521.675	617880.133	19.778	VIA
121 9617528.053 617879.208 19.972 LIND 122 9617528.752 617880.625 19.801 VIA	119	9617522.954	617879.619	19.659	LIND
122 9617528.752 617880.625 19.801 VIA	120	9617525.896	617879.175	19.633	POSTE
	121	9617528.053	617879.208	19.972	LIND
123 9617526.74 617900.307 19.469 VIA	122	9617528.752	617880.625	19.801	VIA
1 1 1 1 1 1 1 1 1 1	123	9617526.74	617900.307	19.469	VIA
124 9617527.573 617899.826 19.638 TOPO	124	9617527.573	617899.826	19.638	ТОРО
125 9617531.037 617900.111 19.698 LIND	125	9617531.037	617900.111	19.698	LIND
126 9617532.341 617899.753 19.582 LIND	126	9617532.341	617899.753	19.582	LIND

	ı			T
127	9617533.353	617899.105	20.071	VIA
128	9617530.549	617917.017	20.463	VIA
129	9617531.273	617916.39	19.651	ТОРО
130	9617534.974	617915.878	19.713	LIND
131	9617535.956	617915.835	19.393	LIND
132	9617537.229	617915.486	19.947	VIA
133	9617532.132	617925.788	19.43	VIA
134	9617533.472	617925.299	19.663	ТОРО
135	9617537.104	617924.132	19.663	LIND
136	9617537.932	617924.179	19.413	VIA
137	9617538.881	617923.551	19.971	VIA
138	9617540.941	617941.979	19.632	PI 5
139	9617537.418	617943.179	19.6	PI 6
140	9617549.447	617978.835	19.626	PI 6AD
141	9617569.008	618077.785	19.101	LIND
142	9617569.009	618077.787	19.103	VIA
143	9617546.93	617957.95	19.614	VIA
144	9617545.078	617958.545	19.661	LIND
145	9617541.223	617959.338	19.65	LIND
146	9617540.128	617959.762	19.615	VIA
147	9617543.454	617976.922	19.601	VIA
148	9617544.989	617976.9	19.631	LIND
149	9617549.365	617976.019	19.596	POSTE
150	9617550.929	617975.51	19.803	LIND
151	9617551.407	617978.263	19.684	VIA
152	9617549.786	617999.113	19.477	VIA

153	9617550.541	617998.958	19.536	ТОРО
154	9617553.501	617998.697	19.524	LIND
155	9617555.259	617998.326	20.17	LIND
156	9617556.01	617997.977	20.351	VIA
157	9617555.864	618030.1	19.358	LIND
158	9617557.289	618030.121	19.319	VIA
159	9617561.719	618055.91	19.349	PI 5AT
160	9617563.849	618055.117	19.3	VIA
161	9617549.445	617978.832	19.629	ТОРО
162	9617561.439	618029.46	19.286	LIND
163	9617562.183	618027.76	19.267	LIND
164	9617562.841	618027.169	19.719	VIA
165	9617569.795	618054.915	19.425	VIA
166	9617567.679	618054.877	19.266	LIND
167	9617564.126	618055.434	19.319	LIND
168	9617564.089	618063.778	19.245	LIND
169	9617572.305	618066.231	19.284	POSTE
170	9617574.703	618075.879	19.275	VIA
171	9617574.403	618075.808	19.261	VIA
172	9617573.888	618076.52	19.035	LIND
173	9617568.516	618076.866	19.083	LIND
174	9617567.77	618077.126	19.268	VIA
175	9617572.538	618094.387	19.176	VIA
176	9617573.334	618094.178	19.049	LIND
177	9617577.298	618093.006	19.105	LIND
178	9617578.807	618092.804	19.132	VIA

179	9617577.228	618111.571	19.083	VIA
180	9617578.257	618111.247	18.992	LIND
181	9617581.951	618110.263	18.972	LIND
182	9617583.06	618110.197	19.297	VIA
183	9617586.889	618125.167	19.203	VIA
184	9617586.053	618125.215	18.925	LIND
185	9617581.697	618126.315	19.064	LIND
186	9617581.243	618126.439	19.087	ТОРО
187	9617590.818	618160.632	19.22	VIA
188	9617592.664	618160.052	18.81	LIND
189	9617593.185	618159.527	18.96	VIA
190	9617591.053	618138.703	19.037	VIA
191	9617590.372	618138.892	18.846	LIND
192	9617585.757	618140.254	19.102	LIND
193	9617585.096	618140.476	19.169	VIA
194	9617587.272	618148.23	19.193	VIA
195	9617588.141	618147.94	19.051	LIND
196	9617593.18	618146.362	18.847	PI 7
197	9617594.042	618145.95	19.109	PI 6AT
198	9617591.588	618159.333	18.915	VIA
199	9617569.009	618077.785	19.101	LIND
200	9617597.737	618155.094	18.917	LIND
201	9617599.118	618154.297	19.104	VIA
202	9617609.063	618166.994	19.209	VIA
203	9617607.753	618167.972	18.733	POSTE
204	9617601.947	618172.201	18.907	LIND

				I
205	9617601.011	618172.923	18.974	LIND
206	9617600.771	618173.026	19.002	VIA
207	9617611.852	618186.32	18.851	VIA
208	9617612.494	618185.678	18.821	LIND
209	9617617.878	618181.51	18.813	LIND
210	9617619.64	618180.159	19.158	VIA
211	9617632.099	618195.718	18.816	VIA
212	9617630.467	618197.156	18.749	LIND
213	9617625.49	618200.993	18.756	LIND
214	9617624.711	618201.669	18.777	VIA
215	9617636.22	618215.506	18.814	VIA
216	9617637.103	618214.781	18.771	LIND
217	9617641.925	618211.031	18.768	LIND
218	9617643.662	618209.847	18.93	VIA
219	9617656.249	618225.262	19.046	VIA
220	9617654.796	618226.394	18.799	LIND
221	9617649.65	618230.257	18.861	LIND
222	9617648.965	618230.797	18.891	VIA
223	9617662.867	618247.437	18.816	VIA
224	9617663.858	618246.755	18.816	LIND
225	9617668.915	618243.276	18.842	POSTE
226	9617670.113	618242.268	18.967	LIND
227	9617671.17	618244.373	19.012	VIA
228	9617682.641	618257.543	19.049	VIA
229	9617681.241	618258.675	18.814	LIND
230	9617676.664	618262.059	18.712	LIND

				1
231	9617675.71	618262.915	18.834	VIA
232	9617687.761	618277.379	18.827	VIA
233	9617688.583	618276.513	18.785	LIND
234	9617693.034	618273.138	18.887	LIND
235	9617694.536	618272.136	19.053	ТОРО
236	9617706.364	618286.599	18.94	VIA
237	9617705.264	618287.114	18.881	VIA
238	9617704.291	618287.95	18.931	LIND
239	9617700.236	618291.138	18.74	LIND
240	9617699.689	618291.631	18.808	VIA
241	9617711.455	618305.894	18.811	VIA
242	9617712.245	618305.318	18.731	ТОРО
243	9617716.346	618302.265	18.875	LIND
244	9617717.117	618301.794	19.149	LIND
245	9617718.116	618301.021	19.045	ТОРО
246	9617729.895	618315.46	19.161	VIA
247	9617728.975	618316.207	19.218	VIA
248	9617728.305	618316.602	18.695	LIND
249	9617724.151	618319.939	18.677	POSTE
250	9617723.572	618320.459	18.799	PI 8
251	9617735.174	618322.985	18.835	A8
252	9617758.839	618361.775	18.826	A8AT
253	9617732.888	618323.325	18.724	REF 2
254	9617732.88	618323.313	18.727	REF 1
255	9617745.422	618334.656	18.788	LIND
256	9617759.535	618364.869	18.851	VIA

				T
257	9617742.888	618331.274	19.074	VIA
258	9617742.155	618332.143	18.825	LIND
259	9617737.685	618336.104	18.78	ALC
260	9617736.982	618336.54	18.925	ALC
261	9617738.163	618339.122	19.269	ALC
262	9617738.99	618340.118	19.247	ALC
263	9617744.537	618333.658	18.893	LIND
264	9617745.437	618334.844	18.903	VIA
265	9617753.285	618344.003	18.988	VIA
266	9617752.597	618344.78	18.856	LIND
267	9617748.158	618348.342	18.779	LIND
268	9617747.314	618349.007	19.022	VIA
269	9617758.054	618361.89	18.886	VIA
270	9617758.497	618361.236	18.837	LIND
271	9617762.939	618357.366	18.931	PI 9
272	9617763.785	618356.688	19.113	FONI
273	9617836.256	618453.003	19.568	LIND
274	9617811.524	618426.131	18.604	VIA
275	9617810.863	618425.316	18.552	VIA
276	9617811.37	618424.415	18.705	FONI
277	9617814.633	618421.332	18.729	FONI
278	9617815.068	618421.411	18.726	LIND
279	9617815.861	618422.492	18.777	LIND
280	9617816.515	618420.283	18.634	VIA
281	9617817.448	618421.343	18.714	VIA
282	9617805.001	618406.504	18.526	VIA

				T T
283	9617803.51	618407.206	18.708	LIND
284	9617799.944	618410.523	18.724	LIND
285	9617799.186	618411.317	18.926	VIA
286	9617786.39	618395.959	18.835	VIA
287	9617786.755	618395.163	18.721	VIA
288	9617791.424	618392.063	18.731	LIND
289	9617792.279	618391.245	18.604	VIA
290	9617780.199	618376.653	18.762	VIA
291	9617779.104	618377.124	18.788	LIND
292	9617774.861	618380.658	18.735	LIND
293	9617774.086	618381.186	18.896	VIA
294	9617765.941	618371.419	18.865	VIA
295	9617766.439	618370.337	18.73	HORMIGON
296	9617770.535	618366.723	18.89	HORMIGON
297	9617764.477	618371.811	18.629	HORMIGON
298	9617760.602	618374.938	18.653	HORMIGON
299	9617755.311	618368.66	18.62	PI 8AT
300	9617759.564	618365.204	18.721	LIND POSTE
301	9617758.84	618361.777	18.83	VIA
302	9617832.253	618438.962	19.283	VIA
303	9617831.578	618439.58	19.052	LIND
304	9617827.786	618443.189	19.101	MURO
305	9617827.024	618443.851	19.253	VIA
306	9617832.591	618450.156	19.6	VIA
307	9617832.99	618449.821	19.517	MURO
308	9617837.521	618446.474	19.508	LIND
500	7017037.321	010770.77	17.500	LIND

				1
309	9617838.025	618446.611	19.57	HORMIGON
310	9617838.248	618445.865	19.635	HORMIGON
311	9617840.335	618449.46	19.583	MURO
312	9617843.166	618452.642	19.143	PUENTE
313	9617842.952	618452.231	19.627	PUENTE
314	9617838.887	618456.628	19.125	PUENTE
315	9617849.181	618468.202	19.231	ACERA
316	9617853.476	618464.162	19.225	ACERA
317	9617853.583	618464.121	19.352	ACERA
318	9617854.203	618463.75	19.361	ACERA
319	9617849.004	618468.256	19.343	ACERA
320	9617848.621	618468.802	19.319	ACERA
321	9617838.743	618456.743	19.307	ACERA
322	9617838.279	618457.124	19.54	ACERA
323	9617843.403	618452.581	19.347	MURO
324	9617843.883	618452.095	19.552	HORMIGON
325	9617838.476	618456.892	19.626	HORMIGON
326	9617838.532	618456.709	19.138	LIND
327	9617835.757	618453.47	19.566	VIA
328	9617857.019	618477.925	19.263	VIA
329	9617857.443	618477.376	19.249	ТОРО
330	9617861.885	618473.683	19.182	ТОРО
331	9617863.75	618472.056	19.61	VIA
332	9617874.972	618487.154	19.005	VIA
333	9617874.221	618487.952	18.944	LIND
334	9617870.004	618491.413	19.06	LIND

335	9617869.43	618491.982	19.198	VIA
336	9617882.578	618506.863	18.926	VIA
337	9617883	618506.033	18.928	FILO
338	9617887.393	618503.051	18.827	POSTE
339	9617889.004	618501.839	19.117	LIND
340	9617891.891	618505.45	19.062	VIA
341	9617901.877	618514.985	18.994	VIA
342	9617899.988	618516.495	18.698	LIND
343	9617895.65	618520.622	18.823	LIND
344	9617895.149	618521.161	18.867	VIA
345	9617906.578	618534.134	18.821	VIA
346	9617906.918	618533.689	18.749	FILO
347	9617911.635	618529.662	18.588	LIND
348	9617913.306	618528.099	18.637	VIA
349	9617918.582	618547.763	18.767	VIA
350	9617919.332	618546.945	18.671	FILO
351	9617923.624	618543.238	18.616	FILO
352	9617925.621	618541.321	18.516	VIA
353	9617937.22	618555.102	18.777	VIA
354	9617935.739	618556.344	18.63	LIND
355	9617930.794	618560.601	18.658	LIND
356	9617930.233	618561.175	18.735	VIA
357	9617942.75	618575.318	18.637	VIA
358	9617943.248	618574.738	18.64	FILO
359	9617948.252	618570.329	18.64	POSTE
360	9617949.399	618569.301	18.47	LIND

361	9617951.466	618572.666	18.626	LIND
362	9617956.148	618590.739	18.484	VIA
363	9617956.194	618590.769	18.63	VIA
364	9617956.96	618590.198	18.544	FILO
365	9617961.807	618585.821	18.607	FILO
366	9617963.961	618584.018	18.491	VIA
367	9617977.972	618599.097	18.724	VIA
368	9617975.841	618601.365	18.468	LIND
369	9617970.973	618606.719	18.592	LIND
370	9617970.52	618607.242	18.625	VIA
371	9617986.761	618625.936	18.663	VIA
372	9617987.436	618625.015	18.61	LIND
373	9617992.619	618621.074	18.603	LIND
374	9617994.792	618618.978	18.742	VIA
375	9618010.733	618636.794	18.668	POSTE
376	9618008.676	618638.973	18.52	VIA
377	9618011.233	618640.162	18.653	LIND
378	9618003.731	618643.398	18.498	LIND
379	9618002.752	618644.103	18.645	VIA
380	9618019.052	618662.89	18.627	VIA
381	9618019.832	618662.393	18.61	FILO
382	9618024.834	618657.803	18.688	LIND
383	9618027.023	618656.569	18.681	VIA
384	9618044.603	618676.94	18.714	VIA
385	9618042.1	618677.61	18.646	LIND
386	9618037.263	618682.733	18.591	VIA

	ı			
387	9618036.758	618683.307	18.665	VIA
388	9618052.354	618701.253	18.609	VIA
389	9618052.86	618700.203	18.534	LIND
390	9618057.995	618695.367	18.711	VIA
391	9618059.397	618694.45	18.741	VIA
392	9618065.554	618704.537	18.693	LIND
393	9618060.518	618709.311	18.629	PI 10
394	9618059.96	618709.968	18.66	A 10
395	9618080.345	618733.14	18.622	A 10AT
396	9618046.363	618680.159	18.722	LIND
397	9618046.358	618680.151	18.721	LIND
398	9618059.75	618693.707	18.825	LIND
399	9618067.009	618703.48	18.752	POSTE
400	9618059.928	618710.011	18.671	FILO
401	9618071.478	618708.151	18.535	VIA
402	9618078.272	618715.637	18.827	VIA
403	9618076.292	618716.924	18.719	LIND
404	9618071.288	618721.413	18.627	LIND
405	9618070.256	618721.989	18.701	VIA
406	9618078.973	618733.404	18.755	VIA
407	9618079.636	618732.605	18.645	FILO
408	9618084.576	618729.273	18.67	LIND
409	9618086.845	618728.032	18.734	VIA
410	9618083.642	618742.253	18.811	VIA
411	9618084.43	618741.788	18.643	ТОРО
412	9618089.889	618738.722	18.706	FILO

	1			
413	9618091.54	618737.775	18.997	FILO
414	9618092.146	618737.547	18.978	ТОРО
415	9618099.7	618752.363	18.914	VIA
416	9618099.35	618752.579	19.039	VIA
417	9618097.64	618753.625	18.741	LIND
418	9618092.186	618756.665	18.637	LIND
419	9618091.309	618757.236	18.816	VIA
420	9618098.693	618771.527	18.686	VIA
421	9618099.35	618770.89	18.653	LIND
422	9618105.479	618767.854	18.704	ENTRADA VIA
423	9618107.421	618767.135	18.588	ENTRADA VIA
424	9618106.889	618766.044	18.789	ENTRADA VIA
425	9618103.241	618761.018	18.713	ENTRADA VIA
426	9618107.445	618760.802	18.891	LIND
427	9618108.48	618763.94	19.186	VIA
428	9618113.933	618780.898	18.663	VIA
429	9618112.398	618781.695	18.847	LIND
430	9618107.189	618784.109	18.692	LIND
431	9618105.721	618785.187	18.853	VIA
432	9618113.144	618799.718	18.83	VIA
433	9618114.028	618798.926	18.901	LIND
434	9618119.246	618796.3	18.918	LIND
435	9618120.893	618795.563	18.941	VIA
436	9618120.108	618813.275	19.159	VIA
437	9618121.242	618812.367	19.036	LIND
438	9618125.492	618809.921	19.042	LIND

				1
439	9618127.01	618807.928	19.295	VIA
440	9618133.77	618822.123	19.075	VIA
441	9618132.653	618823.255	18.931	LIND
442	9618127.718	618825.433	18.945	LIND
443	9618126.641	618826.103	19.111	VIA
444	9618136.786	618845.209	19.058	VIA
445	9618137.815	618844.467	19.055	LIND
446	9618141.414	618841.346	19.057	LIND
447	9618142.665	618838.859	19.182	VIA
448	9618141.844	618854.216	19.149	VIA
449	9618142.79	618853.576	19.076	ТОРО
450	9618145.34	618850.202	19.11	LIND
451	9618147.031	618848.538	19.054	VIA
452	9618148.94	618866.508	19.125	VIA
453	9618149.625	618866.113	19.064	ТОРО
454	9618152.908	618863.922	19.076	LIND
455	9618154.619	618862.343	18.978	VIA
456	9618156.853	618880.364	19.156	PI 11
457	9618157.623	618879.796	19.046	A11
458	9618216.74	618982.284	19.204	A11AT
459	9618191.842	618939.518	19.063	LIND
460	9618191.839	618939.514	19.065	VIA
461	9618163.008	618891.375	19.003	VIA
462	9618163.882	618891.176	19.056	ТОРО
463	9618167.632	618888.89	19.07	POSTE
464	9618169.781	618887.675	19.158	LIND

				I
465	9618169.994	618902.376	19.024	VIA
466	9618174.14	618910.647	19.046	VIA
467	9618174.978	618910.543	19.027	ТОРО
468	9618178.823	618908.226	19.054	ТОРО
469	9618180.384	618907.18	19.174	VIA
470	9618192.366	618928.222	19.287	VIA
471	9618190.992	618929.187	19.082	LIND
472	9618187.102	618931.411	19.047	LIND
473	9618186.5	618931.697	18.947	VIA
474	9618199.261	618953.689	18.99	VIA
475	9618199.892	618953.426	19.083	ТОРО
476	9618204.384	618950.815	19.175	ТОРО
477	9618205.515	618949.942	19.215	VIA
478	9618216.835	618969.067	19.373	VIA
479	9618215.64	618970.109	19.284	LIND
480	9618210.941	618971.954	19.193	LIND
481	9618210.11	618972.631	19.123	ТОРО
482	9618219.271	618989.231	18.865	VIA
483	9618219.79	618989.274	19.148	VIA
484	9618220.373	618988.755	19.212	ТОРО
485	9618224.151	618985.667	19.243	POSTE
486	9618225.376	618984.097	19.249	ТОРО
487	9618224.859	618997.52	19.083	VIA
488	9618235.1	619000.826	19.172	VIA
489	9618233.935	619001.366	19.131	LIND
490	9618230.659	619004.394	19.171	ТОРО

401 0619229 759 610004 520 10 002 1714	
491 9618228.758 619004.539 19.092 VIA	
492 9618248.498 619022.998 19.22 VIA	
493 9618247.055 619023.832 19.175 LIND	
494 9618242.991 619024.935 19.163 PI 12	
495 9618240.453 619025.325 19.192 REF 1	
496 9618289.399 619091.041 19.262 REF 2	
497 9618197.223 618970.434 18.888 PI 11AT	
498 9618201.297 618961.922 18.783 LIND	
501 9618216.74 618982.289 19.208 VIA	
502 9618243.065 619030.236 18.9 LIND	
503 9618244.948 619029.399 19.12 VIA	
504 9618254.659 619048.815 18.916 VIA	
505 9618255.968 619048.153 19.114 LIND	
506 9618260.124 619045.965 19.174 LIND	
507 9618261.488 619045.325 19.118 VIA	
508 9618263.821 619063.581 18.897 VIA	
509 9618265.311 619063.022 19.108 TOPO	
510 9618270.379 619061.451 19.192 LIND	
511 9618271.672 619061.773 19.191 VIA	
512 9618274.899 619081.008 19.121 VIA	
513 9618276.028 619080.116 19.307 TOPO	
514 9618280.542 619077.656 19.354 ENTRADA	VIA
515 9618281.792 619076.97 19.354 ENTRADA	VIA
516 9618285.154 619081.008 19.423 ENTRADA	VIA
517 9618289.796 619081.009 19.751 ENTRADA	VIA
518 9618293.685 619079.225 19.846 ENTRADA	VIA

519	9618296.476	619076.36	19.867	ENTRADA VIA
520	9618299.154	619079.778	19.998	ENTRADA VIA
521	9618293.334	619085.045	19.797	LIND
522	9618289.306	619089.003	19.373	VIA
523	9618284.935	619097.132	19.086	VIA
524	9618286.178	619096.175	19.009	ТОРО
525	9618290.521	619093.409	19.177	LIND
526	9618291.283	619093.048	19.485	ТОРО
527	9618294.57	619112.743	19.288	VIA
528	9618294.849	619112.238	19.071	VIA
529	9618295.721	619111.659	19.072	ТОРО
530	9618300.222	619108.858	19.215	ТОРО
531	9618301.087	619108.368	19.418	VIA
532	9618312.015	619125.394	19.308	VIA
533	9618311.105	619125.923	19.158	LIND
534	9618307.168	619128.337	19.129	LIND
535	9618305.266	619129.105	19.195	ТОРО
536	9618315.803	619145.358	19.348	VIA
537	9618316.414	619144.846	19.11	VIA
538	9618317.143	619144.503	19.133	ТОРО
539	9618321.296	619141.499	19.24	LIND
540	9618322.17	619140.973	19.333	ТОРО
541	9618325.646	619160.816	19.352	VIA
542	9618326.355	619160.38	19.238	VIA
543	9618327.135	619159.888	19.257	ТОРО
544	9618331.174	619157.298	19.337	ТОРО
344	9618331.174	619157.298	19.33/	TOPO

	ı			
545	9618332.255	619156.666	19.434	VIA
546	9618342.941	619172.942	19.292	VIA
547	9618341.826	619173.335	19.329	ТОРО
548	9618338.08	619175.515	19.249	LIND
549	9618336.629	619176.229	19.146	ALC
550	9618335.55	619176.995	18.763	ALC
551	9618347.592	619191.317	19.468	ТОРО
552	9618348.341	619192.339	19.471	ТОРО
553	9618347.41	619192.123	19.081	VIA
554	9618346.783	619192.551	19.274	VIA
555	9618348.056	619191.73	19.472	ALC
556	9618351.154	619189.171	19.444	ALC
557	9618352.035	619189.036	19.435	ТОРО
558	9618351.356	619188.109	19.425	ТОРО
559	9618352.032	619188.364	19.289	ТОРО
560	9618352.62	619187.903	19.584	VIA
561	9618362.358	619203.633	19.42	VIA
562	9618361.483	619204.098	19.275	ТОРО
563	9618357.955	619206.329	19.172	LIND
564	9618357.05	619206.757	19.051	LIND
565	9618355.8	619207.547	19.447	ТОРО
566	9618365.691	619222.662	19.323	VIA
567	9618366.081	619222.344	19.075	VIA
568	9618367.127	619221.329	19.145	PI 12
569	9618370.946	619218.89	19.239	A12
570	9618414.549	619289.822	19.43	A12AD

571	9618441.205	619338.442	19.321	ТОРО
572	9618441.21	619338.451	19.319	LIND
573	9618372.368	619218.758	19.455	ТОРО
574	9618377.752	619241.801	19.248	VIA
575	9618378.74	619242.004	19.107	VIA
576	9618379.984	619241.236	19.184	ТОРО
577	9618383.945	619238.86	19.254	LIND
578	9618384.789	619238.468	19.282	ТОРО
579	9618391.322	619263.13	19.282	VIA
580	9618392.076	619262.84	19.138	VIA
581	9618393.244	619262.429	19.209	ТОРО
582	9618396.834	619260.326	19.211	ТОРО
583	9618397.532	619259.813	19.275	VIA
584	9618406.632	619274.532	19.386	VIA
585	9618405.769	619274.979	19.399	LIND
586	9618402.069	619277.075	19.299	LIND POSTE
587	9618400.425	619277.727	19.346	VIA
588	9618411.661	619296.115	19.315	VIA
589	9618412.639	619295.198	19.312	ТОРО
590	9618416.451	619292.576	19.411	ТОРО
591	9618417.34	619292.087	19.42	VIA
592	9618429.329	619310.792	19.281	VIA
593	9618428.397	619311.296	19.274	LIND
594	9618425.08	619313.207	19.3	PI 12AT
595	9618423.716	619314.426	19.3	LIND
596	9618414.544	619289.812	19.433	VIA

597	9618434.202	619330.532	19.182	VIA
598	9618435.689	619329.785	19.202	ТОРО
599	9618439.225	619326.395	19.264	ENTRADA VIA
600	9618441.73	619324.75	19.163	ENTRADA VIA
601	9618444.911	619327.139	19.185	ENTRADA VIA
602	9618449.325	619326.728	19.211	ENTRADA VIA
603	9618453.18	619325.442	19.207	ENTRADA VIA
604	9618455.075	619328.748	19.297	ENTRADA VIA
605	9618449.847	619332.818	19.327	ENTRADA VIA
606	9618446.892	619336.875	19.283	ENTRADA VIA
607	9618438.169	619334.646	19.196	ENTRADA VIA
608	9618436.951	619337.579	19.058	ENTRADA VIA
609	9618434.364	619342.564	19.258	ENTRADA VIA
610	9618436.87	619344.254	19.231	ENTRADA VIA
611	9618439.022	619340.983	19.182	VIA
612	9618441.743	619340.199	19.314	VIA
613	9618444.457	619343.801	19.39	ALC
614	9618448.314	619340.663	19.299	ALC
615	9618448.995	619340.465	19.081	ALC
616	9618448.397	619339.546	19.185	ALC
617	9618449.909	619339.805	19.04	ALC
618	9618442.996	619344.369	19.134	POSTE
619	9618443.517	619345.22	19.151	REF 1
620	9618442.853	619343.885	19.332	LIND
621	9618450.969	619339.41	19.082	VIA
622	9618452.115	619360.081	19.183	VIA

623	9618453.283	619359.224	19.366	LIND
624	9618457.175	619356.677	19.343	LIND
625	9618458.184	619356.08	19.149	LIND
626	9618470.088	619374.459	19.215	VIA
627	9618463.896	619378.054	19.263	VIA
628	9618464.609	619377.429	19.408	VIA
629	9618468.767	619375.027	19.409	VIA
630	9618475.087	619393.892	19.488	LIND
631	9618478.743	619391.291	19.413	LIND
632	9618480.241	619391.168	19.313	LIND
633	9618474.297	619394.272	19.509	LIND
634	9618487.086	619414.41	19.421	VIA
635	9618492.145	619408.842	19.446	VIA
636	9618490.787	619410.103	19.502	LIND
637	9618487.432	619413.042	19.501	LIND
638	9618497.216	619429.942	19.445	VIA
639	9618502.697	619426.309	19.355	VIA
640	9618501.523	619426.846	19.435	LIND
641	9618497.8	619429.241	19.536	LIND
642	9618515.639	619445.828	19.271	VIA
643	9618509.472	619449.979	19.694	VIA
644	9618510.581	619449.472	19.478	LIND
645	9618514.701	619446.594	19.373	LIND
646	9618526.588	619462.67	19.28	VIA
647	9618520.261	619466.667	19.49	VIA
648	9618521.444	619465.947	19.455	LIND

				I
649	9618525.374	619463.369	19.48	VIA
650	9618534.882	619488.198	19.502	VIA
651	9618536.129	619487.494	19.385	LIND
652	9618539.884	619484.958	19.385	PI 13
653	9618541.088	619484.404	19.245	A13
654	9618571.625	619535.45	19.411	A13 AD
655	9618609.172	619593.297	19.361	LIND
656	9618609.173	619593.296	19.362	VIA
657	9618548.438	619511.079	19.143	VIA
658	9618550.073	619510.034	19.418	LIND
659	9618553.998	619507.482	19.394	LIND
660	9618555.54	619506.764	19.14	VIA
661	9618569.434	619528.123	19.164	VIA
662	9618568.236	619529.259	19.331	LIND
663	9618565.219	619532.993	19.33	LIND
664	9618563.919	619534.01	19.179	LIND
665	9618576.651	619553.2	19.35	VIA
666	9618583.031	619549.066	19.367	VIA
667	9618581.447	619549.832	19.418	VIA
668	9618577.832	619551.932	19.389	VIA
669	9618593.645	619568.495	19.343	LIND
670	9618589.625	619571.241	19.326	LIND
671	9618588.464	619572.058	19.228	LIND
672	9618594.791	619567.231	19.071	LIND
673	9618604.914	619583.699	19.127	VIA
674	9618599.103	619587.54	19.245	VIA
				·

				1
675	9618600.08	619586.894	19.329	F
676	9618603.351	619584.604	19.331	F
677	9618603.946	619593.838	19.027	VIA
678	9618608.945	619589.456	18.916	VIA
679	9618607.311	619590.785	19.295	LIND
680	9618604.726	619592.941	19.189	LIND
681	9618613.859	619609.877	19.403	VIA
682	9618619.822	619606.531	19.355	VIA
683	9618618.642	619607.345	19.457	VIA
684	9618615.315	619609.492	19.36	VIA
685	9618629.971	619624.601	19.437	LIND
686	9618626.374	619626.821	19.436	LIND
687	9618625.461	619627.981	19.251	LIND
688	9618631.53	619623.549	19.147	LIND
689	9618642.497	619641.236	19.216	VIA
690	9618636.596	619644.83	19.312	VIA
691	9618637.51	619644.104	19.487	LIND
692	9618641.296	619641.839	19.445	LIND
693	9618651.059	619654.375	19.15	VIA
694	9618645.13	619658.014	19.373	VIA
695	9618645.916	619657.117	19.448	POSTE
696	9618649.346	619654.948	19.474	A14
697	9618566.237	619537.038	19.077	PI 14
698	9618671.736	619689.248	19.432	A14AT
699	9618691.683	619722.922	19.428	LIND
700	9618671.731	619689.242	19.432	VIA
/00	96186/1./31	619689.242	19.432	VIA

				T T
701	9618652.931	619668.862	19.499	VIA
702	9618653.599	619668.628	19.411	LIND
703	9618657.985	619666.882	19.409	LIND
704	9618658.903	619665.302	19.337	VIA
705	9618671.678	619685.875	19.365	VIA
706	9618670.615	619686.896	19.42	LIND
707	9618667.249	619690.25	19.42	LIND
708	9618664.933	619689.291	19.158	VIA
709	9618675.358	619704.63	19.222	VIA
710	9618676.545	619704.363	19.374	LIND
711	9618680.51	619701.976	19.396	LIND
712	9618681.375	619700.988	19.425	VIA
713	9618689.374	619711.131	19.702	VIA
714	9618688.077	619712.776	19.432	LIND
715	9618684.332	619716.46	19.355	LIND
716	9618683.014	619717.291	19.23	VIA
717	9618695.506	619719.067	19.529	VIA
718	9618694.537	619720.112	19.438	LIND
719	9618691.676	619724.001	19.403	LIND
720	9618690.19	619725.329	19.256	LIND
721	9618697.18	619729.729	19.412	VIA
722	9618700.539	619723.763	19.661	VIA
723	9618699.761	619724.985	19.369	VIA
724	9618697.203	619727.768	19.352	VIA
725	9618712.102	619736.678	19.395	LIND
726	9618713.714	619733.43	19.412	LIND
/26	9618/13./14	619/33.43	19.412	LIND

727	9618714.478	619732.148	19.889	LIND
728	9618710.803	619737.582	19.513	LIND
729	9618726.719	619746.741	19.598	VIA
730	9618729.872	619741.35	19.56	VIA
731	9618729.289	619742.874	19.453	VIA
732	9618727.26	619745.803	19.405	VIA
733	9618747.133	619757.25	19.449	VIA
734	9618749.115	619753.969	19.508	VIA
735	9618766.747	619764.972	19.594	PI 15
736	9618765.199	619768.105	19.582	PI 14
737	9618774.872	619773.119	19.715	LIND
738	9618691.68	619722.922	19.432	LIND
739	9618746.291	619758.029	19.607	LIND
740	9618749.912	619753.773	19.816	LIND
741	9618765.722	619769.551	19.722	VIA
742	9618768.382	619764.617	19.948	VIA
743	9618768.291	619765.881	19.595	VIA
744	9618766.683	619769.063	19.572	VIA
745	9618783.158	619777.797	19.642	LIND
746	9618784.504	619775.319	19.686	LIND
747	9618785.503	619774.731	20.129	ALC
748	9618782.609	619778.941	19.847	ALC
749	9618783.496	619778.645	19.546	FONDO
750	9618784.117	619779.002	19.588	LIND
751	9618783.798	619779.032	18.32	VIA
752	9618806.436	619786.956	19.237	VIA

9618805.524	619787.764	19.777	LIND
9618803.565	619790.369	19.842	ALC
9618803.356	619791.027	19.757	ALC
9618810.539	619789.983	19.627	ALA
9618808.008	619788.702	19.691	ALC
9618807.63	619787.617	19.313	ALC
9618808.208	619788.678	19.477	FONDO
9618810.466	619789.722	19.391	FONDO
9618809.779	619789.22	17.51	ALC
9618807.973	619793.472	17.748	ALC
9618806.323	619792.781	20.023	ALC
9618806.924	619792.555	20.028	LIND
9618809.363	619793.894	19.921	LIND
9618809.907	619794.864	19.88	LIND
9618816.64	619792.262	19.855	VIA
9618811.267	619795.819	19.562	VIA
9618812.961	619795.607	19.726	PI 16
9618815.309	619792.94	19.749	PI 15AT
9618920.414	619854.544	19.901	LIND
9618774.875	619773.124	19.716	LIND
9618831.766	619800.667	19.691	VIA
9618828.414	619806.492	19.572	VIA
9618828.882	619805.669	19.664	VIA
9618831.318	619801.536	19.594	VIA
9618847.392	619815.421	19.662	LIND
9618849.36	619812.422	19.69	LIND
	9618803.565 9618810.539 9618808.008 9618808.208 9618808.208 9618809.779 9618806.323 9618806.323 9618809.363 9618809.363 9618811.267 9618811.267 9618815.309 9618815.309 9618828.414 9618828.414 9618828.414	9618808.208 619788.678 9618810.466 619789.722 9618809.779 619789.22 9618807.973 619793.472 9618806.323 619792.781 9618809.363 619792.555 9618809.907 619794.864 9618811.267 619795.819 9618812.961 619795.607 9618815.309 619792.94 9618774.875 619773.124 9618828.414 619800.667 9618828.414 619806.492 9618831.318 619801.536	9618803.565 619790.369 19.842 9618803.356 619791.027 19.757 9618810.539 619789.983 19.627 9618808.008 619788.702 19.691 9618807.63 619787.617 19.313 9618808.208 619788.678 19.477 9618810.466 619789.722 19.391 9618809.779 619789.22 17.51 9618807.973 619793.472 17.748 9618806.323 619792.781 20.023 9618809.363 619792.781 20.028 9618809.363 619793.894 19.921 9618816.64 619792.262 19.855 9618811.267 619795.819 19.562 9618812.961 619795.607 19.726 9618815.309 619792.94 19.749 9618874.875 619773.124 19.716 9618828.414 619806.492 19.572 9618828.882 619805.669 19.664 9618847.392 619815.421 19.662

779	9618849.995	619811.469	19.766	LIND
780	9618846.911	619817.019	19.628	POSTE
781	9618866.992	619828.642	19.737	LIND
782	9618880.167	619829.388	19.892	VIA
783	9618871.801	619824.129	19.92	VIA
784	9618871.472	619824.859	19.726	VIA
785	9618869.73	619828.946	19.684	VIA
786	9618887.451	619834.647	19.834	LIND
787	9618885.482	619837.828	19.764	LIND
788	9618884.783	619839.277	19.716	LIND
789	9618886.82	619832.89	19.506	LIND
790	9618902.472	619849.097	20.129	VIA
791	9618906.049	619843.989	19.969	VIA
792	9618905.389	619845.338	19.813	VIA
793	9618903.898	619848.921	19.821	VIA
794	9618922.455	619859.616	19.813	LIND
795	9618924.147	619856.414	19.845	LIND
796	9618925.318	619854.864	19.11	LIND
797	9618921.639	619860.602	20.011	LIND
798	9618942.761	619865.417	19.988	VIA
799	9618938.776	619870.75	20.057	VIA
800	9618939.498	619869.491	19.878	VIA
801	9618941.659	619866.484	19.93	VIA
802	9618957.303	619880.171	19.994	LIND
803	9618959.262	619876.777	20.004	LIND
804	9618960.211	619875.443	19.527	LIND POSTE
798 799 800 801 802 803	9618938.776 9618939.498 9618941.659 9618957.303 9618959.262	619865.417 619870.75 619869.491 619866.484 619880.171 619876.777	19.988 20.057 19.878 19.93 19.994 20.004	VIA VIA VIA VIA LIND LIND

				I
831	9619077.95	619951.125	20.307	VIA
832	9619079.412	619947.564	20.323	VIA
833	9619060.302	619936.493	20.28	LIND
834	9619058.339	619939.45	20.279	LIND
835	9619057.707	619940.442	20.538	LIND
836	9619060.815	619935.457	20.507	VIA
837	9619097.176	619963.619	20.473	VIA
838	9619097.692	619962.632	20.219	LIND
839	9619099.264	619959.175	20.312	LIND
840	9619099.84	619958.267	20.477	VIA
841	9619112.139	619972.297	20.475	VIA
842	9619112.538	619971.623	20.204	LIND
843	9619114.717	619968.017	20.292	LIND
844	9619115.24	619967.392	20.434	VIA
845	9619134.217	619978.54	20.172	VIA
846	9619133.449	619979.11	20.211	LIND
847	9619131.49	619982.613	20.205	LIND
848	9619129.199	619982.408	20.261	VIA
849	9619142.65	619990.058	20.299	VIA
850	9619143.048	619989.497	20.149	LIND
851	9619144.989	619985.903	20.212	PI 17AT
852	9619145.408	619985.252	20.389	CERRAMIENTO
853	9619061.277	619940.949	20.312	VIA
854	9619157.807	619992.862	20.434	VIA
855	9619157.375	619993.595	20.43	ТОРО
856	9619154.679	619996.763	20.19	LIND

857	9619154.277	619997.268	20.16	LIND
858	9619153.735	619998.219	20.416	ТОРО
859	9619160.988	620005.396	20.327	VIA
860	9619161.756	620004.731	20.311	VIA
861	9619162.484	620004.084	20.259	CERRAMIENTO
862	9619166.394	620001.502	20.403	CERRAMIENTO
863	9619168.238	619999.041	20.428	ТОРО
864	9619177.881	620004.766	20.441	VIA
865	9619176.079	620007.553	20.405	VIA
866	9619172.558	620010.086	20.323	LIND
867	9619167.94	620012.367	20.324	LIND
868	9619166.04	620013.192	20.281	VIA
869	9619170.081	620022.562	20.641	VIA
870	9619171.761	620022.181	20.546	LIND
871	9619176.501	620020.976	20.687	LIND
872	9619184.213	620020.02	20.727	VIA
873	9619179.286	620030.729	20.778	VIA
874	9619178.203	620030.924	20.883	LIND
875	9619174.009	620031.918	20.832	LIND
876	9619172.996	620032.451	20.674	VIA
877	9619177.74	620044.827	21.134	VIA
878	9619178.435	620044.717	21.1	LIND
879	9619181.831	620043.45	21.197	LIND
880	9619182.972	620043.028	21.33	LIND
881	9619181.438	620054.883	21.204	VIA
882	9619186.938	620053.787	20.905	VIA

		I		
883	9619185.91	620053.901	21.314	LIND
884	9619181.804	620054.928	21.24	VIA
885	9619184.78	620063.672	21.334	VIA
886	9619185.253	620063.296	21.275	LIND
887	9619188.896	620061.752	21.319	PI 19
888	9619190.037	620061.359	21.251	PI 18AT
889	9619191.637	620076.328	21.325	POSTE
890	9619165.091	619999.57	20.404	VIA
891	9619188.384	620071.583	21.345	VIA
892	9619189.208	620071.183	21.344	LIND
893	9619192.726	620069.348	21.206	LIND
894	9619193.396	620069.079	21.053	VIA
895	9619198.328	620074.798	20.955	VIA
896	9619197.687	620075.679	21.159	LIND
897	9619194.884	620079.349	21.31	VIA
898	9619198.526	620083.849	20.725	VIA
899	9619199.219	620083.399	21.205	LIND
900	9619201.952	620079.985	21.114	LIND
901	9619202.511	620078.861	20.772	VIA
902	9619212.539	620085.545	20.948	VIA
903	9619212.083	620086.394	21.231	LIND
904	9619209.767	620090.225	21.183	LIND
905	9619209.458	620091.083	21.03	VIA
906	9619222.41	620098.364	21.166	VIA
907	9619222.921	620097.635	21.275	LIND
908	9619224.888	620094.202	21.274	LIND

	I			1
909	9619225.462	620093.099	21	LIND
910	9619188.382	620072.558	21.012	ENTRADA VIA
911	9619190.668	620078.181	21.109	ENTRADA VIA
912	9619192.876	620079.766	21.129	
913	9619195.688	620080.848	21.12	ENTRADA VIA
913	9019193.000	020000.040	21.12	ENTRADA VIA
914	9619193.103	620086.878	20.408	ENTRADA VIA
915	9619196.728	620086.466	20.436	ENTRADA VIA
916	9619193.834	620086.651	20.454	ENTRADA VIA
710	7017175.051	020000.031	20.131	LIVIICIDII VIII
917	9619199.337	620096.726	20.33	ENTRADA VIA
918	9619195.974	620097.166	19.247	ENTRADA VIA
919	9619195.988	620097.234	20.43	ENTRADA VIA
920	9619201.491	620110.736	20.345	REF 2
720	, , , , , , , , , , , , , , , , , , , ,	020110.750	20.313	
921	9619199.24	620110.867	20.478	REF 1
922	9619201.178	620104.818	20.433	
923	9619199.364	620093.288	20.476	

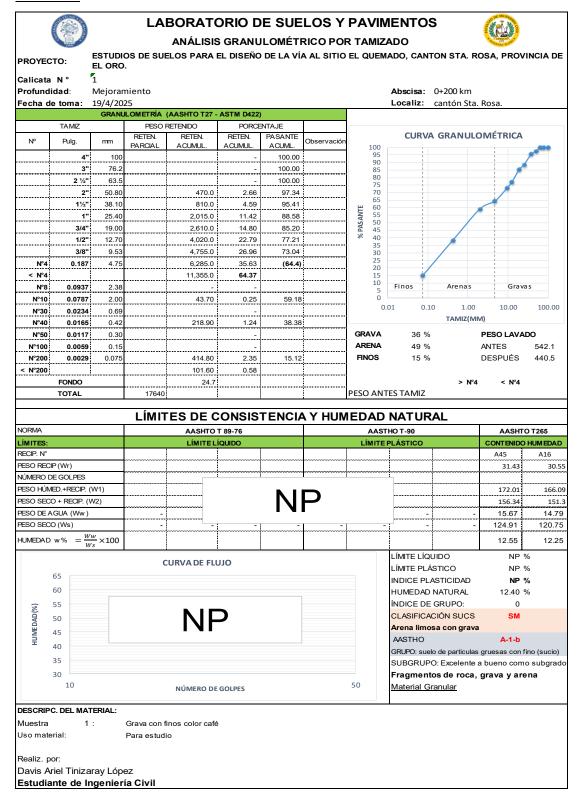
Anexo 2: Tablas de registro de aforo vehicular

					FECHA	A DE CONTE	0:31/03/20	025				
	CLAS	IFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LIVIANOS	мото	Clase 1	*	18	3	1	8	6	0	9	19	6
LIVIANOS	AUTO	Clase 2		4	3	0	0	2	0	2	1	0
CAMIONES	2DA	Clase 3				5	1	2	1	0	3	5
LIVIANOS	2DB	Clase 4		2	0	1	1	4	0	1	0	0
	3-A	Clase 5	00-00							1	3	4
CAMIONES PES ADOS	4-C	Clase 6	000		2					2		
	4-0	Clase 7	4-0 octorus									
	281	Clase 8	0 0									
	282	Clase 9										
	283	Clase 10	253									
	381	Clase 11	0 00-0									
TRACTOR	382	Clase 12	00-00-0	2		1				1		
CAMION	383	Clase 13	8									
	2R2	Clase 14										
	2R3	Clase 15	2R3									
	3R2	Clase 16	382									
	3R3	Clase 17										

					FECH	A DE CONTE	O: 01/04/20	025				
	CLAS	IFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LBJANOS	мото	Clase 1	*	20	14	3	14	5	6	15	17	6
CAMIONES LIVIANOS CAMIONES PESADOS TRACTOR CAMION	AUTO	Clase 2		5	5	2	2	3	5	3	6	2
	2DA	Clase 3	000	1	5	3	4	2	5	4	3	4
LIVIANOS	2DB	Clase 4			7	4	2	3	2	2	6	4
	3-A	Clase 5								1		
CAMIONES PES ADOS	4-C	Clase 6	000 0					1				
	4-0	Clase 7	4-D OCTOPUS									
	281	Clase 8	0 0-0									
	2S2	Clase 9										
	283	Clase 10	255									
	381	Clase 11	0 00-0									
TRACTOR	382	Clase 12	00 00-0									
CAMION	383	Clase 13	000 00	3				2			1	
	2R2	Clase 14										
	2R3	Clase 15	2R3									
	3R2	Clase 16	382									
	3R3	Clase 17										

					FECH	A DE CONTE	O: 02/04/20	025				
	CLAS	IFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LIVIANOS	мото	Clase 1	≈	42	20	4	9	11	4	6	30	8
LIVIANOS	AUTO	Clase 2		5	6	1	5	5	5	4	9	4
CAMIONES	2DA	Clase 3		3	5	7	6	2	4	4	3	
LIVIANOS	2DB	Clase 4		6	6	2	1	4	2	5	10	
	3-A	Clase 5	00-10							1	1	
CAMIONES PES ADOS	4-C	Clase 6	000	3			1			1	1	
	4-0	Clase 7	4.0 octorus									
	2S1	Clase 8	0 0-0									
	282	Clase 9							1		1	
	283	Clase 10	000 0 0									
	381	Clase 11	0 00-0						1		1	
TRACTOR	382	Clase 12	00 00-0									
CAMION	383	Clase 13	000 00-0									
	2R2	Clase 14										
	2R3	Clase 15	2R3									
	3R2	Clase 16	382									
	3R3	Clase 17										

					FECHA	A DE CONTE	O: 03/04/20	025				
	CLAS	IFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LIVIANOS	мото	Clase 1	*	40	26	21	6	9	12	20	10	5
LIVIANOS	AUTO	Clase 2		4	7		4	1	5	5	4	2
CAMIONES	2DA	Clase 3		5	6	5	5	3	1	5	6	2
LIVIANOS	2DB	Clase 4			4	1	1			4	2	
	3-A	Clase 5	00-10	2	3	4	2	3	4	2	3	5
CAMIONES PES ADOS	4-C	Clase 6	000									
	4-0	Clase 7	4-0 octorus									
	281	Clase 8	0 0				1				1	
	282	Clase 9	777									
	283	Clase 10	253									
	381	Clase 11	0 00-0									
TRACTOR	382	Clase 12	00 00-0									
CAMION	383	Clase 13	000 00-0									
	2R2	Clase 14										
	2R3	Clase 15	2R3									
	3R2	Clase 16	3R2 0									
	3R3	Clase 17	00-00-0									


					FECHA	A DE CONTE	O: 04/05/20)25				
	CLAS	IFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LIVIANOS	мото	Clase 1	*	50	9	6	29	16	14	16	24	21
	AUTO	Clase 2	6	10	6	5	6	11	9	6	4	6
CAMIONES	2DA	Clase 3	0	11	4	9	6	9	4	6	4	11
LIVIANOS	2DB	Clase 4		3	6	6	6	5	7	9	11	15
	3-A	Clase 5	00-10		1		17	16	16	5	15	9
CAMIONES PES ADOS	4-C	Clase 6	000									
	4-0	Clase 7	4-0 octorus									
	281	Clase 8	0 0									
	282	Clase 9	777									
	283	Clase 10	253									
	381	Clase 11	0 00-0									
TRACTOR	382	Clase 12	00 00-0									
CAMION	383	Clase 13	000 00-0									
	2R2	Clase 14	ř									
	2R3	Clase 15	2R3									
	3R2	Clase 16	3R2 0									
	3R3	Clase 17	· · · · ·									

					FECH/	A DE CONTE	O: 05/04/20)25				
	CLAS	SIFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LIVIANOS	мото	Clase 1	*	41	5	2	54	5	8	17	8	12
LIVIANOS	AUTO	Clase 2	9	8	1		3	1	2	6	4	1
CAMIONES	2DA	Clase 3		8	4	2	4	3	4	6	3	3
LIVIANOS	2DB	Clase 4		2	4	6	14	6	3	5	11	2
	3-A	Clase 5	00-10		3	3	2	4	5	8	4	1
CAMIONES PES ADOS	4-C	Clase 6	000									
	4-0	Clase 7	4-0 octorus									
	281	Clase 8	0 0 0									
	282	Clase 9	777									
	283	Clase 10	253									
	381	Clase 11	0 00-0									
TRACTOR	382	Clase 12	00 00-0									
CAMION	383	Clase 13	000 00-0									
	2R2	Clase 14										
	2R3	Clase 15	2R3									
	3R2	Clase 16	3R2 0									
	3R3	Clase 17	· · · · ·									

					FECHA	A DE CONTE	O: 06/05/20)25				
	CLAS	SIFICACION		06 - 07	07 - 08	08 - 08:30	11 - 12	12 - 13	13 - 13:30	15 - 16	16 - 17	17 - 17:30
LIVIANOS	мото	Clase 1	*	9	8	4	5	1		1	5	
	AUTO	Clase 2		1	2	2	7	4	1	1	4	
CAMIONES	2DA	Clase 3	0	4	1	3	4	2	4	4	3	2
LIVIANOS	2DB	Clase 4			4	2	7	2	5	7	3	2
	3-A	Clase 5	00-10	4	3	4	3	4	3			
CAMIONES PES ADOS	4-C	Clase 6	- CO									
	4-0	Clase 7	4-D OCTOPUS									
	281	Clase 8	0 0 0									
	282	Clase 9	777									
	283	Clase 10	253									
	381	Clase 11	0 00-0									
TRACTOR	382	Clase 12	00 00 0									
CAMION	383	Clase 13	000									
	2R2	Clase 14										
	2R3	Clase 15	2R3									
	3R2	Clase 16	392									
	3R3	Clase 17	00-00-0									

Anexo 3: Ensayos de granulometría, límites de consistencia y contenido de humedad.

Calicata 1

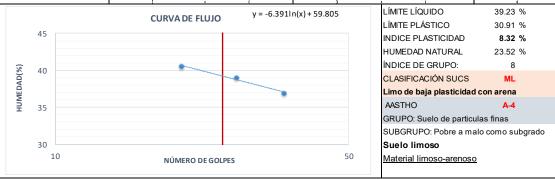
ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:

EL ORO.

m

Calicata N° Profundidad: 0.5


Fecha de toma: 19/4/2025

Abscisa: 0+200 km Localiz: cantón Sta. Rosa.

		GRANU	JLOMETRÍA ((AASHTO T27 -	ASTM D422)							
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE						,	
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CU	RVA	GRANUL	OMÉTRICA	
	4"	100			-	100.00		95 90					
	3"	76.2			-	100.00		85					
	2 ½"	63.5			-	100.00		80 75		T			
	2"	50.80			-	100.00		70		1			
	1½"	38.10			-	100.00		65 2 60		İ			
	1"	25.40			-	100.00		PASANTE 50 45					
	3/4"	19.00			-	100.00							
	1/2"	12.70			-	100.00		% 40 35					
	3/8"	9.53			-	100.00		30		-			
N°4	0.187	4.75			-	(100.0)		25 20					
< Nº4				470.7	100.00			15		1			
N°8	0.0937	2.38		-	-			10 5	Finos	1	Arenas	Grav	as
N°10	0.0787	2.00		2.30	0.49	99.51		0					
N°30	0.0234	0.69			-			0.	01	0.10	1.00		100.0
N°40	0.0165	0.42		12.20	2.59	97.41					TAMIZ(M	IIVI)	
N°50	0.0117	0.30			-			GRAVA		0 %		PESO LAVA	DO
N°100	0.0059	0.15			-			ARENA	1	6 %		ANTES	470.7
N°200	0.0029	0.075		75.50	16.04	83.96		FINOS	8	4 %		DESPUÉS	82
< N°200				388.70	82.58								
	FONDO			6.8							> Nº	4 < N°4	
	TOTAL		470.7					PESO ANT	ES TAN	1IZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA		AASHTO	T 89-76			AASTI	1O T-90		AASHT	O T265
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITE	LÁSTICO		CONTENIDO	D HUM EDAD
RECIP. N°	E24	E80	E11		F24	F89	F78	F49	A39	A46
PESO RECIP (Wr)	11.23	11.28	11.39		4.32	4.28	4.27	4.3	31.58	31.69
NÚMERO DE GOLPES	35	27	20	}						
PESO HÚMED.+RECIP. (W1)	19.31	20.37	23.28		13.57	12.11	12.22	18.11	192.97	175.19
PESO SECO + RECIP. (W2)	17.13	17.82	19.85		11.27	10.34	10.46	14.69	163.01	147.18
PESO DE AGUA (Ww)	2.18	2.55	3.43	-	2.30	1.77	1.76	3.42	29.96	28.01
PESO SECO (Ws)	5.90	6.54	8.46	-	6.95	6.06	6.19	10.39	131.43	115.49
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	36.95	38.99	40.54		33.09	29.21	28.43	32.92	22.80	24.25

DESCRIPC. DEL MATERIAL:

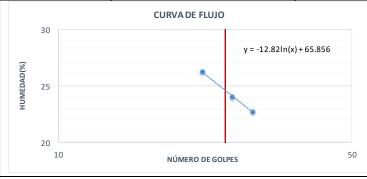
Muestra 1: Fino arcilloso café oscuro

Uso material: Para estudio

Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:


Calicata N° Profundidad: 1 m Fecha de toma: 19/4/2025

Abscisa: 0+200 km Localiz: cantón Sta. Rosa.

		GRANL	JLOMETRÍA ((AASHTO T27 -	ASTM D422)							
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE						,	
N⁰	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CUI	RVA (GRANUL	OMÉTRIC	A
	4"	100			-	100.00		95 90		1			
	3"	76.2			-	100.00		85		1 /			
	2 ½"	63.5			-	100.00		80 75					
	2"	50.80			-	100.00		70		•			
	1½"	38.10			-	100.00		65 世 60		1			
	1"	25.40			-	100.00		SAN 55 50					
	3/4"	19.00			-	100.00		₹ 45					
	1/2"	12.70			-	100.00		% 40 35		1			
	3/8"	9.53			-	100.00		30		1		- 1	
N°4	0.187	4.75			-	(100.0)		25 20					
< N°4				479.8	100.00			15 10		1		- 1	
N°8	0.0937	2.38		-	-			5	Finos	1	Arenas	Gr	avas
№10	0.0787	2.00		2.50	0.52	99.48		0					
№30	0.0234	0.69			-			0.	01	0.10	1.00	10.00	100.00
N°40	0.0165	0.42		12.80	2.67	97.33					TAMIZ(MI	VI)	
N°50	0.0117	0.30			-			GRAVA	C) %		PESO LA	VADO
N°100	0.0059	0.15			-			ARENA	28	3 %		ANTES	479.8
N°200	0.0029	0.075		134.10	27.95	72.05		FINOS	72	2 %		DESPUÉS	S 156.3
< N°200				323.50	67.42								
	FONDO			22							> N°4	< N°	4
	TOTAL		479.8					PESO ANT	ES TAM	IZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA		AASHTO	T 89-76			AASTI	HO T-90		AASH	TO T265
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITE	PLÁSTICO		CONTENID	O HUM EDAD
RECIP. N°	E91	E45	E63		F93	F9	F60	F95	A96	A40
PESO RECIP (Wr)	11.44	11.27	11.12		4.29	4.29	4.3	4.27	31.59	31.62
NÚMERO DE GOLPES	29	26	22							
PESO HÚMED.+RECIP. (W1)	27.42	19.99	21.12		8.13	9.58	8.65	10.63	181.35	196.87
PESO SECO + RECIP. (W2)	24.46	18.30	19.04		7.44	8.67	7.91	9.5	155.49	168.47
PESO DE AGUA (Ww)	2.96	1.69	2.08	-	0.69	0.91	0.74	1.13	25.86	28.40
PESO SECO (Ws)	13.02	7.03	7.92	-	3.15	4.38	3.61	5.23	123.90	136.85
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	22.73	24.04	26.26		21.90	20.78	20.50	21.61	20.87	20.75

LÍMITE LÍQUIDO 24.59 % LÍMITE PLÁSTICO 21.20 % INDICE PLASTICIDAD 3.39 % HUMEDAD NATURAL 20.81 % ÍNDICE DE GRUPO: CLASIFICACIÓN SUCS Limo de baja plasticidad con arena AASTHO GRUPO: Suelo de particulas finas SUBGRUPO: Pobre a malo como subgrado Suelo limoso

Material limoso-arenoso

DESCRIPC. DEL MATERIAL:

Muestra Fino arenoso arcilloso café rojizo

Uso material: Para estudio

Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO: ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.

Calicata N° 1 Profundidad: 1

 Profundidad:
 1.5 m
 Abscisa:
 0+200 km

 Fecha de toma:
 19/4/2025
 Localiz:
 cantón Sta. Rosa.

		GRANL	JLOMETRÍA ((AASHTO T27 -	ASTM D422)						
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE						
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. A CUMUL.	PASANTE ACUML.	Observacion	100	CUR	/A GRANUI	OMETRICA	• • • • • •
	4"	100			-	100.00		95 90	1	/		
	3"	76.2			-	100.00		85	1			
	2 ½"	63.5			-	100.00		80 75				
	2"	50.80			-	100.00		70	1	4		
	1½"	38.10			-	100.00		65 2 60				
	1"	25.40			-	100.00		NS 55 50				
	3/4"	19.00			-	100.00		₹ 45				
	1/2"	12.70			-	100.00		% 40 35	- 1			
	3/8"	9.53			-	100.00		30				
N°4	0.187	4.75			-	(100.0)		25 20	7			
< N°4				604.8	100.00			15	Ī			
N°8	0.0937	2.38		-	-	}		10 5	Finos	Arenas	Grav	/a s
№10	0.0787	2.00		1.32	0.22	99.78		0	i			
№30	0.0234	0.69			-			0	.01 0	.10 1.00		100.00
№40	0.0165	0.42		194.00	32.08	67.92				TAMIZ(N	'IIVI)	
№50	0.0117	0.30			-			GRAVA	0 9	6	PESO LAV	ADO
N°100	0.0059	0.15			-			ARENA	80 9	%	ANTES	604.8
N°200	0.0029	0.075		484.50	80.11	19.89		FINOS	20 %	%	DESPUÉS	500.4
< N°200				104.40	17.26							
	FONDO			14.6		{				> N°	4 < N°4	
	TOTAL		604.8					PESO ANT	ES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA		AASHTO	T 89-76			AASTI	1O T-90		AASH	TO T265
LÍMITES:		LÍMITEL	.ÍQUIDO			LÍMITEP	LÁSTICO		CONTENID	O HUM EDAD
RECIP. N°									A63	A25
PESO RECIP (Wr)									31.57	31.45
NÚMERO DE GOLPES			,	3	 ;					
PESO HÚMED.+RECIP. (W1)				N.					219.43	242.92
PESO SECO + RECIP. (W2)				- I <i>\</i>					178.47	196.56
PESO DE AGUA (Ww)	-			• '	• •		-	-	40.96	46.36
PESO SECO (Ws)	_	-	<u> </u>	-	- :	-]	-	-	146.90	165.11
$HUMEDAD w\% = \frac{Ww}{Ws} \times 100$									27.88	28.08

DESCRIPC. DEL MATERIAL:

Muestra 1 : Fino arenoso arcilloso café rojizo

Uso material: Para estudio

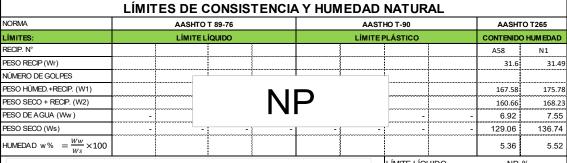
Realiz. por:

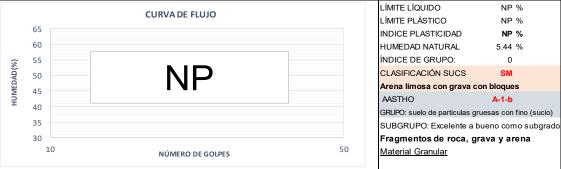
LABORATORIO DE SUELOS Y PAVIMENTOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO: ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.


Calicata N° 2


Profundidad: Mejoramiento Fecha de toma: 19/4/2025

Abscisa: 1+200km

Localiz: cantón Sta. Rosa.

		GRANU	JLOMETRÍA	(AASHTO T27 -	ASTM D422)								
	TAMZ		PESO	RETENIDO	PORCE	NTAJE							,	
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observación	100		CURVA	GRANUI	LOME	TRICA	
	4"	100			-	100.00		95 90		-			1	
	3"	76.2		2,075.0	7.00	93.00		85					-	
	2 ½"	63.5		2,075.0	7.00	93.00		80 75					1	
	2"	50.80		2,360.0	7.96	92.04		70					1	
	1½"	38.10		2,715.0	9.16	90.84		65 世 60				\sim		
	1"	25.40		4,090.0	13.80	86.20		60 55 50 45 40						
	3/4"	19.00		4,830.0	16.30	83.70		84 45						
	1/2"	12.70		6,695.0	22.59	77.41		% 40 35						
	3/8"	9.53		7,820.0	26.39	73.61		30					1	
N°4	0.187	4.75		10,475.0	35.35	(64.7)		25 20		/				
< N°4				19,160.0	64.65			15 10					1	
N°8	0.0937	2.38		-	-			5		inos	Arenas		Grava	S
N°10	0.0787	2.00		49.70	0.17	58.54		0	0.01	0.1	0 1.00	_	40.00	400.00
N°30	0.0234	0.69			-				0.01	0.10	TAMIZ(N		10.00	100.00
N°40	0.0165	0.42		186.10	0.63	41.76					TAIVIIZ(II	viivij		
N°50	0.0117	0.30			-			GRAVA	١.	35 %		PES	SO LAVAI	00
N°100	0.0059	0.15			-		ļ	ARENA		48 %			TES	525.5
N°200	0.0029	0.075		388.10		16.90	ļ	FINOS		17 %		DE:	SPUÉS	395.5
< N°200				130.00	0.44		ļ							
	FONDO			7.2							> N	°4	< N°4	
	TOTAL		29635					PESO AN	NTES	TAMIZ				

DESCRIPC. DEL MATERIAL:

Muestra 2 : Grava con finos color café claro

Uso material: Para estudio

Realiz. por:

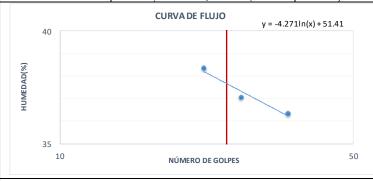
ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO:

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.

Calicata N° 2
Profundidad: 0.5 m
Fecha de toma: 19/4/2025


Abscisa: 1+200km

Localiz: cantón Sta. Rosa.

		GRANU	JLOMETRÍA ((AASHTO T27 -	ASTM D422)							
	TAMZ		PESO F	RETENIDO	PORCE	ENTAJE						,	
N⁰	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CUR	VA GRAN	IULON	/IETRICA	
	4"	100			-	100.00		95 90			/		
	3"	76.2			-	100.00		85		*		1	
	2 ½"	63.5			-	100.00		80 75					
	2"	50.80			-	100.00		70 65	-			1	
	1½"	38.10			-	100.00							
	1"	25.40			-	100.00		55 50 45 40					
	3/4"	19.00			-	100.00		A 45					
	1/2"	12.70			-	100.00		% 40 35					
	3/8"	9.53			-	100.00		30				-	
N°4	0.187	4.75			-	(100.0)		25 20					
< N°4				571.8				15 10				1	
N°8	0.0937	2.38		-	-			5	Finos	Areı	nas	Grava	S
№10	0.0787	2.00		19.70	3.45	96.55		0		2.40	1.00	10.00	100.00
№30	0.0234	0.69			-			0.	01 (1.00	10.00	100.00
№40	0.0165	0.42		75.50	13.20	86.80				I AIVI	IZ(MM)		
№50	0.0117	0.30			-			GRAVA	0	%	Р	ESO LAVAI	00
N°100	0.0059	0.15			-	<u></u>		ARENA	30	%	A	NTES	571.8
N°200	0.0029	0.075		170.00	29.73	70.27		FINOS	70	%	D	ESPUÉS	172.8
< N°200				399.00	69.78	<u></u>							
	FONDO			2		<u></u>				>	N°4	< N°4	
	TOTAL		571.8					PESO ANT	ES TAMIZ	Z			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA		AASHTO	T 89-76			AASTI	HO T-90		AASHT	O T265
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITE	PLÁSTICO		CONTENIDO	D HUM EDAD
RECIP. N°	E16	E17	E120		F12	F25	F67	F77	A83	A48
PESO RECIP (Wr)	11.15	11.38	11.44		4.32	4.26	4.27	4.27	31.53	31.47
NÚMERO DE GOLPES	35	27	22							
PESO HÚMED.+RECIP. (W1)	19.93	22.73	18.98		6.95	7.23	6.25	6.79	159.37	151.94
PESO SECO + RECIP. (W2)	17.59	19.66	16.89		6.35	6.55	5.78	6.2	132.99	126.07
PESO DE AGUA (Ww)	2.34	3.07	2.09	-	0.60	0.68	0.47	0.59	26.38	25.87
PESO SECO (Ws)	6.44	8.28	5.45	-	2.03	2.29	1.51	1.93	101.46	94.60
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	36.34	37.08	38.35		29.56	29.69	31.13	30.57	26.00	27.35

 LÍMITE LÍQUIDO
 37.66 %

 LÍMITE PLÁSTICO
 30.24 %

 INDICE PLASTICIDAD
 7.43 %

 HUMEDAD NATURAL
 26.67 %

 ÍNDICE DE GRUPO:
 5

 CLASIFICACIÓN SUCS
 ML

Limo de baja plasticidad con arena
AASTHO A-4
GRUPO: Suelo de particulas finas

SUBGRUPO: Pobre a malo como subgrado

Suelo limoso

Material limoso-arenoso

DESCRIPC. DEL MATERIAL:

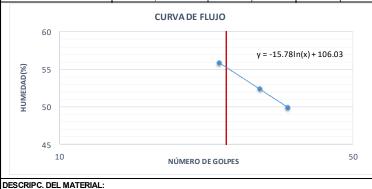
Muestra 2 : Fino arcilloso café oscuro

Uso material: Para estudio

Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:


Calicata N° Profundidad: 1 m Fecha de toma: 19/4/2025

Abscisa: 1+200km Localiz: cantón Sta. Rosa.

		GRANU	LOMETRÍA	(AASHTO T27 -	ASTM D422							
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE						
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CURVA	GRANULO	METRICA	-0 0000
	4"	100			-	100.00		95 90	•			
	3"	76.2			-	100.00		85				
	2 ½"	63.5			-	100.00		80 75				
	2"	50.80			-	100.00		70			1	
	1½"	38.10			-	100.00		65 世 60				
	1"	25.40			-	100.00		60 55 50 45 40				
	3/4"	19.00			-	100.00		4 5				
	1/2"	12.70			_	100.00		% 40 35				
	3/8"	9.53			-	100.00		30			-	
N°4	0.187	4.75			-	(100.0)		25 20				
< N°4				553.2	100.00			15 10	1			
N°8	0.0937	2.38		-	-			5	Finos	Arenas	Grava	is
№10	0.0787	2.00		1.30	0.23	99.77		0	21	1.00	10.00	100.00
N°30	0.0234	0.69						0	.01 0.10	1.00 TAMIZ(MM)	10.00	100.00
N°40	0.0165	0.42		5.50	0.99	99.01				I AIVIIZ(IVIIVI)		
N°50	0.0117	0.30			-			GRAVA	0 %	F	ESO LAVA	00
N°100	0.0059	0.15			-			ARENA	4 %	A	NTES	553.2
N°200	0.0029	0.075		20.30	3.67	96.33		FINOS	96 %	[ESPUÉS	20.3
< N°200				532.90	96.33							
	FONDO			0						> N°4	< N°4	
	TOTAL		553.2					PESO AN	TES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA	74.6.1.0 1 60 10					AASTI	HO T-90		AASHT	TO T265
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITE	PLÁSTICO		CONTENIDO	O HUM EDAD
RECIP. N°	E16	E99	E79		F98	F42	F37	F119	A42	A1
PESO RECIP (Wr)	11.17	11.41	11.32		4.31	4.28	4.26	4.26	30.46	31.51
NÚMERO DE GOLPES	35	30	24							
PESO HÚMED.+RECIP. (W1)	19.52	18.97	19.55		8.44	8.81	8.93	8.13	118.62	143.64
PESO SECO + RECIP. (W2)	16.74	16.37	16.60		7.26	7.55	7.55	7.02	93.03	111.84
PESO DE AGUA (Ww)	2.78	2.60	2.95	-	1.18	1.26	1.38	1.11	25.59	31.80
PESO SECO (Ws)	5.57	4.96	5.28	-	2.95	3.27	3.29	2.76	62.57	80.33
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	49.91	52.42	55.87		40.00	38.53	41.95	40.22	40.90	39.59

LÍMITE LÍQUIDO 55.24 % LÍMITE PLÁSTICO 40.17 % INDICE PLASTICIDAD 15.06 % HUMEDAD NATURAL 40.24 % ÍNDICE DE GRUPO: CLASIFICACIÓN SUCS МН Limo de alta plasticidad AASTHO GRUPO: Suelo de particulas finas

SUBGRUPO: Pobre a malo como subgrado Suelo arcilloso

Material limoso-arenoso

Muestra Limo arcilloso café rojizo

Uso material: Para estudio

Realiz. por:

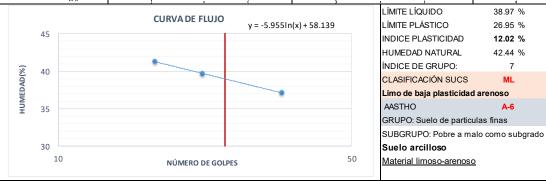
ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:

EL ORO.

Calicata N° Profundidad: 1.5 19/4/2025

Fecha de toma:


Abscisa: 1+200km

Localiz: cantón Sta. Rosa.

		GRANL	JLOMETRÍA	(AASHTO T27 -	ASTM D422)						
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE					,	
Nº	Pulg.	mm	RETEN.	RETEN.	RETEN.	PASANTE	Observacion		CURVA	GRANUL	OMÉTRICA	
			PARCIAL	A CUMUL.	ACUMUL.	ACUML.		100 95				
	4"	100				100.00		90				
	3"	76.2			-	100.00		85 80		*	- i	
	2 ½"	63.5			-	100.00		75				
	2"	50.80			-	100.00		70 65				
	1½"	38.10			-	100.00			Ī			
	1"	25.40			-	100.00		55 50				
	3/4"	19.00			-	100.00		≦ 45	1			
	1/2"	12.70			-	100.00		% 40 35				
	3/8"	9.53			-	100.00		30				
N°4	0.187	4.75			-	(100.0)		25 20				
< N°4				593.0	100.00			15				
N°8	0.0937	2.38		-	-	}		10 5	Finos	Arenas	Grav	as
N°10	0.0787	2.00		17.60	2.97	97.03		0				
N°30	0.0234	0.69			-			0	.01 0.1		10.00	100.00
N°40	0.0165	0.42		91.40	15.41	84.59				TAMIZ(MI	VI)	
N°50	0.0117	0.30			-			GRAVA	0 %		PESO LAVA	DO
N°100	0.0059	0.15			-			ARENA	34 %		ANTES	593
N°200	0.0029	0.075		199.20	33.59	66.41		FINOS	66 %		DESPUÉS	202.2
< N°200				390.80	65.90							
	FONDO			2.5						> N°4	< N°4	
	TOTAL		593					PESO ANT	ES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA	AASHTO T 89-76			AASTHO T-90				AASHTO T265			
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITE	LÁSTICO		CONTENIDO HUMEDAD		
RECIP. N°	E71	E17	E72		F67	F112	F16	F59	A51	A24	
PESO RECIP (Wr)	11.20	11.37	11.23		4.26	4.28	4.32	4.3	31.61	31.33	
NÚMERO DE GOLPES	34	22	17								
PESO HÚMED.+RECIP. (W1)	20.54	20.66	20.23		7.71	7.85	8.7	8.25	137.41	132.21	
PESO SECO + RECIP. (W2)	18.01	18.02	17.60		7.01	7.09	7.5	7.66	105.98	102.06	
PESO DE AGUA (Ww)	2.53	2.64	2.63	-	0.70	0.76	1.20	0.59	31.43	30.15	
PESO SECO (Ws)	6.81	6.65	6.37	-	2.75	2.81	3.18	3.36	74.37	70.73	
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	37.15	39.70	41.29		25.45	27.05	37.74	17.56	42.26	42.63	

DESCRIPC. DEL MATERIAL:

Muestra 2: Limo arcilloso café rojizo Uso material: Para estudio

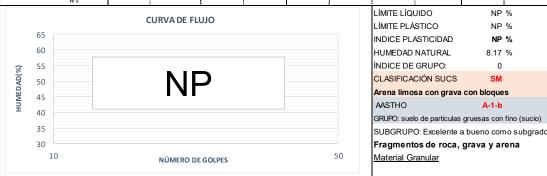
Realiz. por:

LABORATORIO DE SUELOS Y PAVIMENTOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:

EL ORO.


Calicata N°

Profundidad: Mejoramiento Abscisa: 2+500 km Fecha de toma: 19/4/2025 Localiz: cantón Sta. Rosa.

		GRANU	ILOMETRÍA	(AASHTO T27 -	ASTM D422)						
	TAMZ		PESO	RETENIDO	PORCE	ENTAJE						
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observación	100	CURV	A GRANULO	MÉTRICA	
	4"	100			-	100.00		95	1			
	3"	76.2		2,475.0	6.31	93.69		90 85				1
	2 ½"	63.5		2,935.0	7.48	92.52		80 75			-	
	2"	50.80		4,760.0	12.13	87.87		70				
	11/2"	38.10		6,285.0	16.02	83.98		65 世 60				
	1"	25.40		8,310.0	21.18	78.82		5 5				
	3/4"	19.00		9,340.0	23.80	76.20		50 45				
	1/2"	12.70		11,340.0	28.90	71.10		% 40 35			1	
	3/8"	9.53		12,535.0	31.94	68.06		30		/		
N°4	0.187	4.75		15,505.0	39.51	(60.5)		25 20			1	
< N°4				23,735.0	60.49			15	·			
N°8	0.0937	2.38		-	-			10 5	Finos	Arenas	Grava	a s
N°10	0.0787	2.00		75.60	0.19	53.27		0				
N°30	0.0234	0.69			-		<u> </u>	0.	.01 0.:		10.00	100.0
№40	0.0165	0.42		297.50	0.76	32.07				TAMIZ(MM		
N°50	0.0117	0.30			-			GRAVA	40 %	. F	PESO LAVA	DO
N°100	0.0059	0.15			-			ARENA	47 %	. A	NTES	633.3
№200	0.0029	0.075		493.60	1.26	13.34		FINOS	13 %	5 [DESPUÉS	500.8
< N°200				132.50	0.34							
	FONDO			7.2		<u> </u>				> N°4	< N°4	
	TOTAL		39240					PESO AN	TES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA	AASI	HTO T 89-76			AASTI	HO T-90		AASHT	O T265
LÍMITES:	LÍMI	TE LÍQUIDO			LÍMITE	LÁSTICO		CONTENIDO	D HUM EDAD
RECIP. N°								A33	A40
PESO RECIP (Wr)								30.61	31.64
NÚMERO DE GOLPES			}	I	{				
PESO HÚMED.+RECIP. (W1)			.					203.68	198.49
PESO SECO + RECIP. (W2)			N	\mathbf{P}				190.25	186.24
PESO DE AGUA (Ww)	-		1 4			-	-	13.43	12.25
PESO SECO (Ws)	-	-1	-} -	1 -	ş -	-	-	159.64	154.60
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$								8.41	7.92

DESCRIPC. DEL MATERIAL:

Muestra Grava con finos color café

Uso material: Para estudio

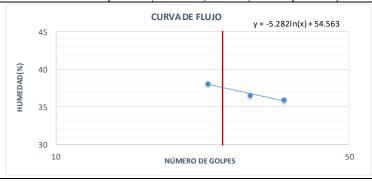
Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO:

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.


Calicata N° Profundidad: 0.5 m Fecha de toma: 19/4/2025

Abscisa: 2+500 km Localiz: cantón Sta. Rosa.

		GRANL	JLOMETRÍA	(AASHTO T27 -	ASTM D422)							
	TAMIZ		PESO I	RETENIDO	PORCE	ENTAJE							
N°	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CU	RVA (GRANULO	OMÉTRICA	• • • • • •
	4"	100			-	100.00		95 90					
	3"	76.2			-	100.00		85		*			
	2 ½"	63.5			-	100.00		80 75					
	2"	50.80			-	100.00		70		1			
	1½"	38.10			-	100.00		65 世 60		1			
	1"	25.40			-	100.00		55 50 45 40					
	3/4"	19.00			-	100.00		84 45					
	1/2"	12.70			-	100.00		% 40 35					
	3/8"	9.53			-	100.00		30		-			
N°4	0.187	4.75			-	(100.0)		25 20					
< N°4				512.5	100.00			15		1		1	
N°8	0.0937	2.38		-	-			10 5	Finos	1	Arenas	Gra	vas
№10	0.0787	2.00		3.40	0.66	99.34		0					
N°30	0.0234	0.69			-			0.	.01	0.10	1.00	10.00	100.0
№40	0.0165	0.42		15.10	2.95	97.05					TAMIZ(MI	VI)	
N°50	0.0117	0.30			-			GRAVA		0 %		PESO LAV	ADO
N°100	0.0059	0.15			-			ARENA	1	2 %		ANTES	512.5
N°200	0.0029	0.075		63.10	12.31	87.69		FINOS	8	8 %		DESPUÉS	69.6
< N°200				442.90	86.42								
	FONDO			6.7		}					> N°4	< N°4	
	TOTAL		512.5			}		PESO AN	TES TAI	ΙΙΖ			

	LIMII	E2 DE C	ONSIS	IENCIA	A Y HUIV	IEDAD	NAIUK	AL		
NORMA		AASHTO	T 89-76			AASTI	HO T-90		AASHT	TO T265
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITEF	PLÁSTICO		CONTENIDO	O HUM EDAD
RECIP. N°	E45	E54	E91		F18	F37	F39	F119	A45	A16
PESO RECIP (Wr)	11.29	11.41	11.43		4.3	4.27	4.31	4.27	31.46	30.56
NÚMERO DE GOLPES	35	29	23							
PESO HÚMED.+RECIP. (W1)	21.96	20.12	21.54	}	6.95	6.45	6.33	6.92	162.02	165.51
PESO SECO + RECIP. (W2)	19.14	17.79	18.75	}	6.35	5.98	5.91	6.36	131.84	134.58
PESO DE AGUA (Ww)	2.82	2.33	2.79	-	0.60	0.47	0.42	0.56	30.18	30.93
PESO SECO (Ws)	7.85	6.38	7.32	-	2.05	1.71	1.60	2.09	100.38	104.02
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	35.92	36.52	38.11		29.27	27.49	26.25	26.79	30.07	29.73

LÍMITEC DE CONCICTENCIA V ULIMEDAD MATUDAL

LÍMITE LÍQUIDO 37.56 % LÍMITE PLÁSTICO 27.45 % INDICE PLASTICIDAD 10.11 % HUMEDAD NATURAL 29.90 % ÍNDICE DE GRUPO: 10 CLASIFICACIÓN SUCS ML Limo de baja plasticidad con arena AASTHO GRUPO: Suelo de particulas finas

SUBGRUPO: Pobre a malo como subgrado Suelo limoso

Material limoso-arenoso

DESCRIPC. DEL MATERIAL:

Muestra Fino arcilloso rojizo Uso material: Para estudio

Realiz. por:

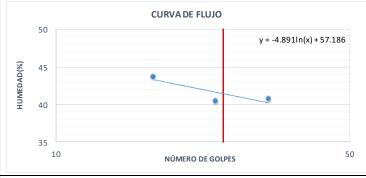
PROYECTO:

LABORATORIO DE SUELOS Y PAVIMENTOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.


Calicata N° 3
Profundidad: 1 m
Fecha de toma: 19/4/2025

Abscisa: 2+500 km Localiz: cantón Sta. Rosa.

		GRANL	JLOMETRÍA	(AASHTO T27 -	ASTM D422)							
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE							_
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	С	URVA	GRANUL	OMÉTRIC	A
	4"	100			-	100.00		95 90					
	3"	76.2			-	100.00		85					
	2 ½"	63.5			-	100.00		80 75					
	2"	50.80			-	100.00		70		- 1			
	1½"	38.10			-	100.00		65 世 60					
	1"	25.40			_	100.00		SAN 55 50					
	3/4"	19.00			-	100.00		₹ 45		-			
	1/2"	12.70			_	100.00		% 40 35					
	3/8"	9.53			-	100.00		30				- 1	
N°4	0.187	4.75			-	(100.0)		25 20					
< N°4				510.7	100.00			15 10		- 1			
N°8	0.0937	2.38		-	-			. 5	Fino	s ¦	Arenas	Gr	avas
№10	0.0787	2.00		0.40	0.08	99.92		0	.01	0.10	1.00	10.00	100.00
№30	0.0234	0.69			_			J	.01	0.10	1.00		100.00
N°40	0.0165	0.42		15.20	2.98	97.02					TAMIZ(M	IVIJ	
N°50	0.0117	0.30			-			GRAVA		0 %		PESO LA	VADO
N°100	0.0059	0.15			-			ARENA		17 %		ANTES	510.7
N°200	0.0029	0.075		84.90	16.62	83.38		FINOS		83 %		DESPUÉ	87.8
< N°200				422.90	82.81								
	FONDO			2.6]			> Nº4	4 < N°	4
	TOTAL		510.7					PESO AN	TES TA	MIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA	AASHTO T 89-76			AASTHO T-90				AASHTO T265			
LÍMITES:		LÍMITEL	ÍQUIDO			LÍMITE	PLÁSTICO		CONTENIDO HUMEDAI		
RECIP. N°	E11	E17	E80		F9	F60	F95	F98	A90	A63	
PESO RECIP (Wr)	11.41	11.39	11.28		4.3	4.3	4.27	4.32	31.58	31.54	
NÚMERO DE GOLPES	32	24	17								
PESO HÚMED.+RECIP. (W1)	19.93	21.44	20.01		6.02	5.88	6.38	6.14	164.42	171.58	
PESO SECO + RECIP. (W2)	17.46	18.54	17.35		5.64	5.52	5.92	5.71	130.6	135.15	
PESO DE A GUA (Ww)	2.47	2.90	2.66	-	0.38	0.36	0.46	0.43	33.82	36.43	
PESO SECO (Ws)	6.05	7.15	6.07	-	1.34	1.22	1.65	1.39	99.02	103.61	
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$	40.83	40.56	43.82		28.36	29.51	27.88	30.94	34.15	35.16	

LÍMITE LÍQUIDO 41.44 % LÍMITE PLÁSTICO 29.17 % INDICE PLASTICIDAD 12.27 % HUMEDAD NATURAL 34.66 % ÍNDICE DE GRUPO: CLASIFICACIÓN SUCS ML Limo de baja plasticidad con arena AASTHO GRUPO: Suelo de particulas finas SUBGRUPO: Pobre a malo como subgrado Suelo arcilloso Material limoso-arenoso

DESCRIPC. DEL MATERIAL:

Muestra 3 : Fino limoso arcilloso café oscuro/gris

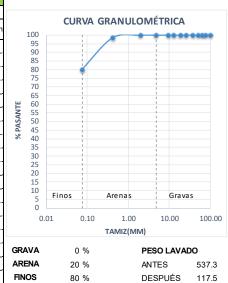
Uso material: Para estudio

Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:

EL ORO.

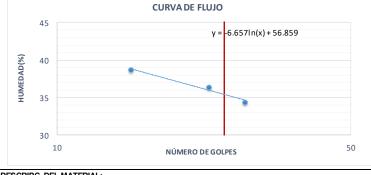

Calicata N° 3

Profundidad: 1.5 Fecha de toma: 19/4/2025 Abscisa: 2+500 km

Localiz: cantón Sta. Rosa.

		GRANU	JLOMETRÍA	(AASHTO T27 -	ASTM D422)		1
	TAMZ		PESO I	RETENIDO	PORCE	NTAJE		
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	
	4"	100			-	100.00		1
	3"	76.2			-	100.00		1
	2 ½"	63.5			-	100.00		1
	2"	50.80			-	100.00		1
	1½"	38.10			-	100.00		ш
	1"	25.40			-	100.00		% PASANTE
	3/4"	19.00			-	100.00		PAS
	1/2"	12.70			-	100.00		%
	3/8"	9.53			-	100.00		1
N°4	0.187	4.75			-	(100.0)		
< N°4				537.3	100.00			
N°8	0.0937	2.38		-	-			
N°10	0.0787	2.00		0.30	0.06	99.94		
N°30	0.0234	0.69			-			
№40	0.0165	0.42		8.20	1.53	98.47		
N°50	0.0117	0.30			-			GR
N°100	0.0059	0.15			-			AR
N°200	0.0029	0.075		107.80	20.06	79.94		FII
< N°200				419.80	78.13			
	FONDO			9.5				

537.3



< N°4

PESO ANTES TAMIZ

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA	AASHTO T 89-76			AASTHO T-90				AASHTO T265		
LÍMITES:		LÍMITELI	QUIDO			LÍMITE	LÁSTICO		CONTENID	O HUM EDAD
RECIP. N°	E71	E72	E17		F16	F59	F67	F112	A39	A96
PESO RECIP (Wr)	11.14	11.17	11.33		4.27	4.24	4.22	4.21	31.59	31.58
NÚMERO DE GOLPES	28	23	15							
PESO HÚMED.+RECIP. (W1)	21.53	22.83	23.37		7.61	9.4	8.19	8.42	176.93	185.62
PESO SECO + RECIP. (W2)	18.87	19.72	20.01		6.92	8.37	7.44	7.61	143.75	150.46
PESO DE A GUA (Ww)	2.66	3.11	3.36	-	0.69	1.03	0.75	0.81	33.18	35.16
PESO SECO (Ws)	7.73	8.55	8.68	-	2.65	4.13	3.22	3.40	112.16	118.88
HUMEDAD w% = $\frac{Ww}{}$ ×100	34.41	36.37	38.71		26.04	24.94	23.29	23.82	29.58	29.58

DESCRIPC. DEL MATERIAL:

TOTAL

Muestra 3: Fino limoso arcilloso café oscuro/gris

Uso material:

Realiz. por:

Davis Ariel Tinizaray López

Estudiante de Ingeniería Civil

LABORATORIO DE SUELOS Y PAVIMENTOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:

EL ORO.

Calicata N°

Profundidad: Mejoramiento Abscisa: 3+100 km Fecha de toma: 19/4/2025 Localiz: cantón Sta. Rosa.

		GRANU	ILOMETRÍA	(AASHTO T27 -	ASTM D422)						
	TAMIZ		PESO F	RETENIDO	PORCE	NTAJE						
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observación	100	CURVA (GRANULON	1ÉTRICA	
	4"	100			-	100.00		95	1			≠
	3"	76.2			-	100.00		90 85				*
	2 ½"	63.5		1,700.0	4.34	95.66		80 75				•
	2"	50.80		4,800.0	12.26	87.74		70				
	1½"	38.10		8,440.0	21.56	78.44		65 <u>ש</u> 60				
	1"	25.40		11,300.0	28.87	71.13		60 55 50 45 40				
ļ	3/4"	19.00		12,935.0	33.04	66.96		50 45				
	1/2"	12.70		15,545.0	39.71	60.29		% 40 35			1	
	3/8"	9.53		16,835.0	43.01	56.99		30				
N°4	0.187	4.75		16,965.0	43.34	(56.7)		25 20		<i>/</i> *		
< N°4				22,180.0	56.66			15				
N°8	0.0937	2.38		-	-			10 5	Finos	Arenas	Grava	S
N°10	0.0787	2.00		67.60	0.17	49.83		0				
N°30	0.0234	0.69			-			0.	.01 0.10	1.00	10.00	100.00
N°40	0.0165	0.42		299.90	0.77	26.37				TAMIZ(MM)		
N°50	0.0117	0.30			-			GRAVA	43 %	P	ESO LAVAI	00
N°100	0.0059	0.15			-			ARENA	46 %		NTES	560.9
N°200	0.0029	0.075		451.10	1.15	11.09		FINOS	11 %	D	ESPUÉS	453.9
< N°200				107.00								
	FONDO			3.5						> N°4	< N°4	
	TOTAL		39,145.0					PESO AN	TES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA		AASHT	O T 89-76			AASTI	1O T-90		AASHI	TO T265
LÍMITES:		LÍMITE	LÍQUIDO			LÍMITE	PLÁSTICO		CONTENIDO	D HUM EDAD
RECIP. N°									A7	A76
PESO RECIP (Wr)									30.72	30.11
NÚMERO DE GOLPES			1	3						
PESO HÚMED.+RECIP. (W1)				N 11	_				218.08	202.7
PESO SECO + RECIP. (W2)					\boldsymbol{arphi}				208.14	193.48
PESO DE A GUA (Ww)	-			1 4			-	-	9.94	9.22
PESO SECO (Ws)	-	_	-; -	-	- :	-)	-	-	177.42	163.37
HUMEDAD w% $=\frac{Ww}{Ws} \times 100$									5.60	5.64

DESCRIPC. DEL MATERIAL:

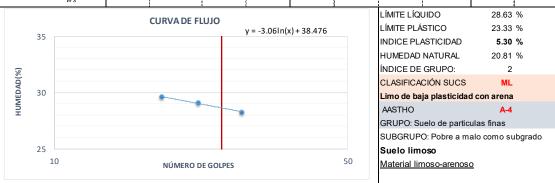
Muestra 4: Grava con finos color café claro

Uso material: Para estudio

Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO:


ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.

Calicata N° Abscisa: 3+100 km Profundidad: 0.5 m Fecha de toma: 19/4/2025 Localiz: cantón Sta. Rosa.

		GRANU	ILOMETRÍA	(AASHTO T27 -	ASTM D422)						
	TAMZ		PESO I	RETENIDO	PORCE	ENTAJE					,	
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CURV	A GRANUL	OMÉTRICA	- 0 0000
	4"	100			-	100.00		95 90				
	3"	76.2			-	100.00		85				
	2 ½"	63.5			-	100.00		80 75				
	2"	50.80			-	100.00		70			1	
	1½"	38.10			-	100.00		65 2 60	4			
	1"	25.40			-	100.00		60 55 50 45 40				
	3/4"	19.00			-	100.00		A 45				
	1/2"	12.70			-	100.00		% 40 35				
	3/8"	9.53			-	100.00		30				
N°4	0.187	4.75			-	(100.0)		25 20				
< N°4				574.2	100.00			15 10	1		1	
N°8	0.0937	2.38		-	-			5	Finos	Arenas	Grav	a s
N°10	0.0787	2.00		8.10	1.41	98.59		0		0 100	40.00	100.00
N°30	0.0234	0.69			-			0	.01 0.1			100.00
№40	0.0165	0.42		55.40	9.65	90.35				TAMIZ(M	livi)	
N°50	0.0117	0.30			-			GRAVA	0 %		PESO LAVA	DO
N°100	0.0059	0.15			-			ARENA	39 %		ANTES	574.2
N°200	0.0029	0.075		224.80	39.15	60.85		FINOS	61 %		DESPUÉS	231.3
< N°200				342.90	59.72	<u> </u>						
	FONDO			6.3		<u></u>				> Nº	4 < N°4	
	TOTAL		574.2	-		1		PESO AN	TES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL NORMA AASHTO T265 **AASHTO T 89-76** AASTHO T-90 LÍMITES: LÍMITE LÍQUIDO LÍMITE PLÁSTICO CONTENIDO HUMEDAD RECIP. N° E72 E79 E91 F59 F70 F78 F119 A49 A59 PESO RECIP (Wr) 11.42 29.85 31.86 11.29 4.28 4.29 11.23 4.26 4.25 NÚMERO DE GOLPES 28 22 18 PESO HÚMED.+RECIP. (W1) 19.90 21.50 23.11 6.46 6.42 6.57 6.79 180.67 171.8 PESO SECO + RECIP. (W2) 17.99 154.71 147.68 19.20 20.44 6.05 6.14 6.32 PESO DE AGUA (Ww) 1.91 2.30 2.67 0.41 0.43 0.47 25.96 24.12 PESO SECO (Ws) 6.76 7.91 9.02 1.77 1.71 1.88 2.07 124.86 115.82 HUMEDAD w% = $\frac{Ww}{Ws} \times 100$ 28.25 29.60 20.83 29.08 23.16 24.56 22.87 22.71 20.79

DESCRIPC. DEL MATERIAL:

Muestra Fino arcilloso arenoso color café

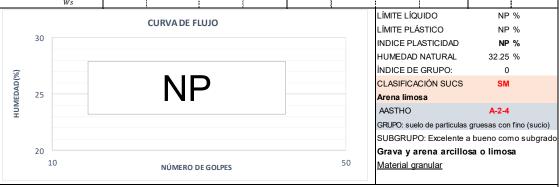
Uso material: Para estudio

Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE PROYECTO:

Calicata N° Profundidad: 1 m Fecha de toma: 19/4/2025


Abscisa: 3+100 km

Localiz: cantón Sta. Rosa.

		GRANL	JLOMETRÍA ((AASHTO T27 -	ASTM D422)							
	TAMZ		PESO F	RETENIDO	PORCE	NTAJE						,	
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. A CUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CU	RVA (GRANULO	OMÉTRICA	
	4"	100			-	100.00		95 90					
	3"	76.2			-	100.00		85		-			
	2 ½"	63.5			-	100.00		80 75					
	2"	50.80			-	100.00		70 65		1			
	11/2"	38.10			-	100.00				1 /			
	1"	25.40			_	100.00		SAN 55 50					
	3/4"	19.00			-	100.00		₹ 45		1/			
	1/2"	12.70				100.00		% 40 35		1/			
	3/8"	9.53			-	100.00		30		-			
N°4	0.187	4.75			-	(100.0)		25 20		1			
< N°4				620.2	100.00			15 10					
N°8	0.0937	2.38		-	-			5	Finos	1	Arenas	Grav	/a s
№10	0.0787	2.00		0.80	0.13	99.87		0	.01	0.10	1.00	10.00	100.00
N°30	0.0234	0.69						U	.01	0.10	TAMIZ(MI		100.00
№40	0.0165	0.42		45.90	7.40	92.60	ļ				TAIVIIZ(IVII	vij	
№50	0.0117	0.30			-			GRAVA	(0 %		PESO LAVA	ADO
N°100	0.0059	0.15			-			ARENA	80	6 %		ANTES	620.2
N°200	0.0029	0.075		536.10	86.44	13.56	ļ	FINOS	14	4 %		DESPUÉS	548.3
< N°200				71.90	11.59		ļ						
	FONDO			11.7			ļ				> N°4	< N°4	
	TOTAL		620.2					PESO AN	TES TAM	IIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA	AASHTO T 89-76			AASTHO T-90				AASHTO T265			
LÍMITES:		LÍMIT	E LÍQUIC	00			LÍMITEF	PLÁSTICO		CONTENIDO	HUMEDAD
RECIP. N°										A55	A65
PESO RECIP (Wr)										31.65	31.82
NÚMERO DE GOLPES		Г			{						
PESO HÚMED.+RECIP. (W1)					N I					239.06	229.87
PESO SECO + RECIP. (W2)					- IVI	\mathbf{P}				187.73	182.29
PESO DE A GUA (Ww)	-							-	-	51.33	47.58
PESO SECO (Ws)	-	L	- i	-	-	- :	-	-	-	156.08	150.47
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$										32.89	31.62

DESCRIPC. DEL MATERIAL:

Muestra Fino arenoso arcilloso café oscuro

Uso material: Para estudio

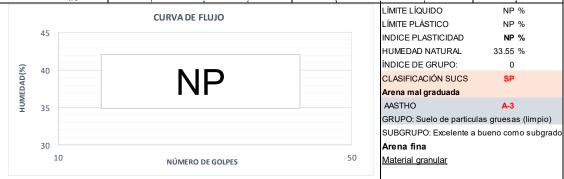
Realiz. por:

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO: ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE

EL ORO.

Calicata N° 4


 Profundidad:
 1.5 m
 Abscisa:
 3+100 km

 Fecha de toma:
 19/4/2025
 Localiz:
 cantón Sta. Rosa.

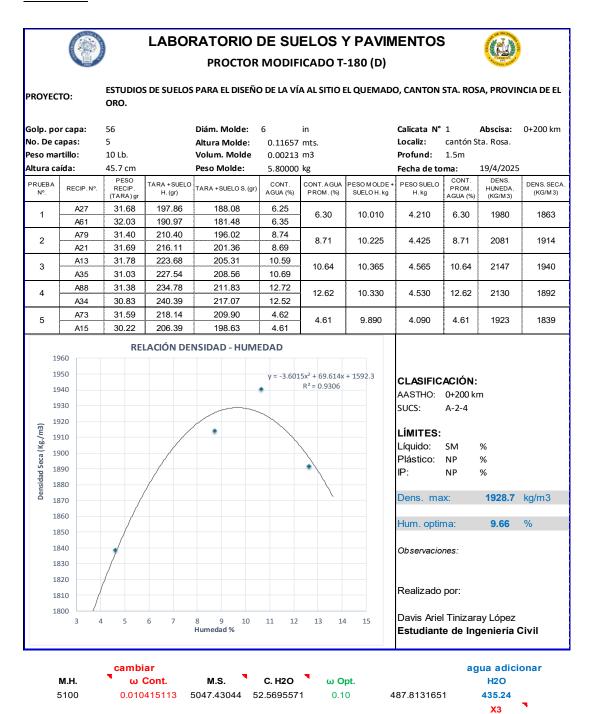
		GRANU	ILOMETRÍA	(AASHTO T27 -	ASTM D422)						
	TAMIZ		PESO	RETENIDO	PORCE	NTAJE						
Nº	Pulg.	mm	RETEN. PARCIAL	RETEN. ACUMUL.	RETEN. ACUMUL.	PASANTE ACUML.	Observacion	100	CURVA	GRANULO	METRICA	- 0 0000
	4"	100			-	100.00		95 90				
	3"	76.2			-	100.00		85				
	2 ½"	63.5			-	100.00		80 75		•		
	2"	50.80			-	100.00		70				
	1½"	38.10			-	100.00		65 2 60				
	1"	25.40			-	100.00		60 55 50 45 40				
	3/4"	19.00			-	100.00		A 45				
	1/2"	12.70			-	100.00		% 40 35				
	3/8"	9.53			-	100.00		30	- 11			
N°4	0.187	4.75			-	(100.0)		25 20				
< N°4				607.2	100.00			15	- 1			
N°8	0.0937	2.38		-	-			10 5	Finos	Arenas	Grava	as
№10	0.0787	2.00		0.80	0.13	99.87		0				
N°30	0.0234	0.69			-	}		0.	0.10		10.00	100.00
N°40	0.0165	0.42		143.60	23.65	76.35				TAMIZ(MM)	
N°50	0.0117	0.30			-			GRAVA	0 %	F	PESO LAVA	DO
N°100	0.0059	0.15			-			ARENA	97 %	A	NTES	607.2
N°200	0.0029	0.075		587.00	96.67	3.33		FINOS	3 %	[DESPUÉS	587.9
< N°200				19.30	3.18							
	FONDO			0.9						> N°4	< N°4	
	TOTAL		607.2					PESO ANT	ES TAMIZ			

LÍMITES DE CONSISTENCIA Y HUMEDAD NATURAL

NORMA		AASHTO	T 89-76		AASTHO T-90				AASHTO T265	
LÍMITES:		LÍMITELÍ	ÍQUIDO			LÍMITEF	PLÁSTICO		CONTENID	D HUM EDAD
RECIP. N°				}					A81	A12
PESO RECIP (Wr)									31.65	31.46
NÚMERO DE GOLPES				,						
PESO HÚMED.+RECIP. (W1)				N.					221.88	215.48
PESO SECO + RECIP. (W2)				- I <i>\</i>					173.88	169.45
PESO DE AGUA (Ww)	-			• '	• •		-	-	48.00	46.03
PESO SECO (Ws)	-	-]	-	-	- :	-)	-	-	142.23	137.99
HUMEDAD w% = $\frac{Ww}{Ws} \times 100$									33.75	33.36

DESCRIPC. DEL MATERIAL:

Muestra 4 : Fino arenoso arcilloso café oscuro


Uso material: Realiz. por:

Davis Ariel Tinizaray López

Estudiante de Ingeniería Civil

Anexo 4: Ensayos de Proctor modificado

Calicata 1

	HUMEDA	HUMEDAD NATURAL					
۱°	p.N° A25		A46				
ecip.	Recip. 31.4	45	31	.68			
Suelo H (gr)	+ Suelo H (gr) 217.2	21	210	.64			
Suelo S (gr)	+ Suelo S (gr) 215.2	28	208	.81			
lume. w (%) 1.	:. Hume. w (%) 1.04988304	14	1.03313	95			
Prom. %	e. Prom. %	1.04					
Prom.	e. Prom. 0.010	0.010415113					
Prom. %	e. Prom. %	.04		3			

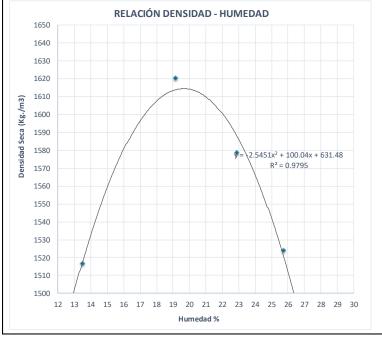
Ms= peso muestra seca MH= peso muestra humeda w adi=humedad a adicionar wop=humedad óptima wN=humedad natural

$$w_{adi} = w_{op} - w_N$$
 $Ms = \frac{MH}{1 + w_N}$
 $H20 \ adi = Ms \times w_{adi}$

1305.73

ml

LABORATORIO DE SUELOS Y PAVIMENTOS


PROCTOR MODIFICADO T-180 (D)

PROYECTO: ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE EL

ORO

Calicata N° 2 Golp. por capa: 56 Diám. Molde: 6 Abscisa: 1+200km No. De capas: 5 Altura Molde: 0.11657 mts. Localiz: cantón Sta. Rosa. Peso martillo: 10 Lb. Volum. Molde 0.00213 m3 Profund: 1.5m Altura caída: Peso Molde: 5.80000 kg 45.7 cm Fecha de toma: 19/4/2025

Altura Ca	ilua.	43.7 (111		reso iviolae.	3.80000	Ng .		reciia de to	IIIa.	13/4/2023	
PRUEBA Nº.	RECIP. N°.	PESO RECIP. (TARA) gr	TARA +SUELO H. (gr)	TARA +SUELO S. (gr)	CONT. AGUA (%)	CONT. AGUA PROM. (%)	PESO M OLDE + SUELO H. kg	PESO SUELO H. kg	CONT. PROM. AGUA (%)	DENS. HUNEDA. (KG/M3)	DENS. SECA. (KG/M3)
1	A8	31.59	186.41	168.03	13.47	13.50	9.460	3.660	13.50	1721	1517
	A83	31.53	198.02	178.19	13.52	13.30	9.400	3.000	13.30	1/21	1517
2	A56	31.51	197.59	175.74	15.15	15.28	9.565	3.765	15.28	1771	1536
	A81	31.65	201.53	178.85	15.41	13.20	9.505	0.700	10.20	.,,,	1330
3	A56	30.59	183.98	159.32	19.16	19.14	9.905	4.105	19.14	1931	1620
3	A39	31.57	200.11	173.06	19.12	13.14	9.905	4.105	19.14	1931	1020
4	XN	36.09	207.37	175.51	22.85	22.89	9.925	4.125	22.89	1940	1579
*	X0	35.27	219.10	184.82	22.92	22.09	9.923	4.123	22.09	1940	15/9
5	A86	31.35	167.14	139.44	25.63	25.74	9.875	4.075	25.74	1916	1524
3	A78	31.54	169.23	140.94	25.86	23.74	9.073	4.073	23.74	1910	1324

CLASIFICACIÓN:

AASTHO: 1+200km SUCS: A-6

LÍMITES:

Líquido: ML %
Plástico: 38.971 %
IP: 26.949 %

Dens. max: **1614.5** kg/m3

Hum. optima: 19.65 %

Observaciones:

Realizado por:

Davis Ariel Tinizaray López Estudiante de Ingeniería Civil

agua adicionar

	cambiar				
M.H.	ω Cont.	M.S.	C. H2O	ω Opt.	
5100	0.047089444	4870.64408	229.355922	0.20	957.2496829

H2O	
727.89	
Х3	•
2183.68	ml

	HUMEDAD NATURAL						
Recip.N°	A5	A81					
Peso Recip.	30.6	31.65					
Tara + Suelo H (gr)	158.84	158.9					
Tara + Suelo S (gr)	153.05	153.2					
Cont. Hume. w (%)	4.728460596	4.6894282					
Hume. Prom. %	4.71						
Hume. Prom.	0.047089444						

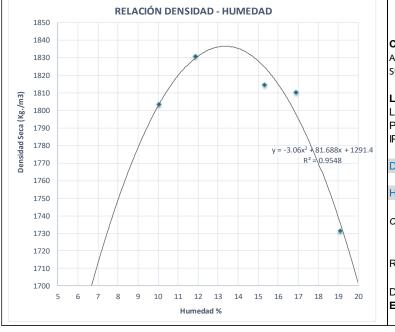
Ms= peso muestra seca MH= peso muestra humeda w adi=humedad a adicionar wop=humedad óptima wN=humedad natural

$$w_{adi} = w_{op} - w_N$$
$$Ms = \frac{MH}{1 + w_N}$$

 $H20 \ adi = Ms \times w_{adi}$

LABORATORIO DE SUELOS Y PAVIMENTOS

PROCTOR MODIFICADO T-180 (D)


PROYECTO: ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE EL

ORO.

Golp. por capa:56Diám. Molde:6inCalicata N° 3Abscisa:2+500 kmNo. De capas:5Altura Molde:0.11657 mts.Localiz:cantón Sta. Rosa.

Peso martillo: 10 Lb. Volum. Molde 0.00213 m3 Profund: 1.5m

Altura caída: 45.7 cm Peso Molde: 5.80000 kg Fecha de toma: 19/4/2025 PESO RECIP CONT. TARA +SUELO TARA +SUELO S. (gr) PRUEBA Nº. CONT. AGUA (%) CONT. AGUA PROM. (%) PESO M OLDE + SUELO H. kg PESO SUELO H.kg (TARA) gr AGUA (%) (KG/M3) A78 31.55 197.31 180.04 11.63 1 10.04 10.020 4.220 10.04 1985 1804 31.38 195.05 8.45 A86 182.30 A60 31.35 202.70 184.45 11.92 2 11.87 10.155 4.355 11.87 2048 1831 A65 31.82 202.38 184.34 11.83 29.89 197.40 175.10 15.36 A44 3 10.250 4.450 15.33 2093 1815 15.33 A90 31.57 197.42 175.41 15.30 A48 31.49 189.59 164.20 19.13 4.385 1731 4 19.10 10.185 19.10 2062 31.44 188.79 163.59 19.07 A28 A14 30.40 199.34 175.19 16.68 5 16.91 10.300 4.500 16.91 2116 1810 30.37 197.38 172.95 17.13 A37

CLASIFICACIÓN:

AASTHO: 2+500 km SUCS: A-6

LÍMITES:

Líquido: ML % Plástico: 35.431 % IP: 24.523 %

Dens. max: 1836.6 kg/m3

Hum. optima: **13.35** %

Observaciones:

Realizado por:

Davis Ariel Tinizaray López Estudiante de Ingeniería Civil

	cambiar					agua adicionar
M.H.	ω Cont.	M.S.	C. H2O	ω Opt.		H2O
5100	0.028920679	4956.65031	143.349694	0.13	661.5994284	518.25
						Х3

agua aurcionai								
H2O								
518.25								
Х3	<u> </u>							
1554.75	ml							

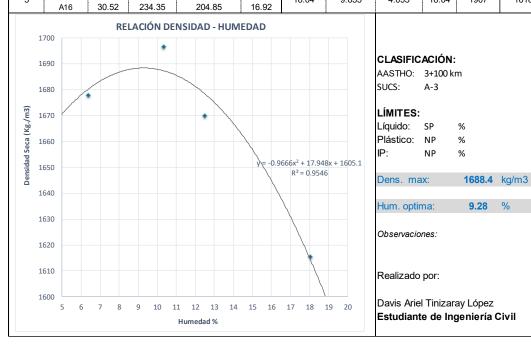
	HUMEDAD NATURAL						
Recip.N°	A91	A15					
Peso Recip.	31.36	30.22					
Tara + Suelo H (gr)	181.27	168.33					
Tara + Suelo S (gr)	177.00	164.5					
Cont. Hume. w (%)	2.931886844	2.852249					
Hume. Prom. %	2.89						
Hume. Prom.	0.028920679						

Ms= peso muestra seca MH= peso muestra humeda w adi=humedad a adicionar wop=humedad óptima wN=humedad natural

$$w_{adi} = w_{op} - w_N$$
$$Ms = \frac{MH}{1 + w_N}$$

 $H20 \ adi = Ms \times w_{adi}$

LABORATORIO DE SUELOS Y PAVIMENTOS



PROCTOR MODIFICADO T-180 (D)

ESTUDIOS DE SUELOS PARA EL DISEÑO DE LA VÍA AL SITIO EL QUEMADO, CANTON STA. ROSA, PROVINCIA DE EL PROYECTO:

ORO.

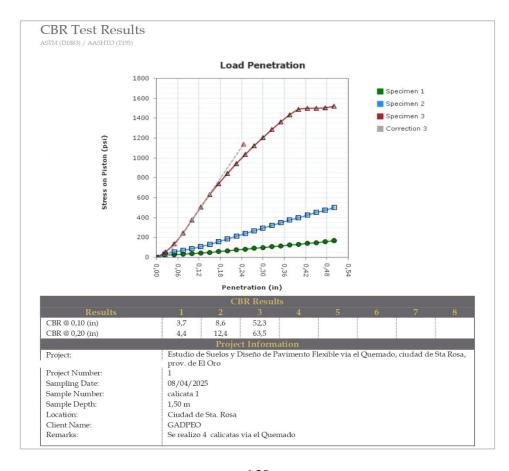
Golp. po	r capa:	56		Diám. Molde:	6	in		Calicata N°	4	Abscisa:	3+100 km
No. De c	apas:	5		Altura Molde:	0.11657	mts.		Localiz:	cantón S	ta. Rosa.	
Peso ma	rtillo:	10 Lb.		Volum. Molde	0.00213	m3		Profund:	1.5m		
Altura ca	aída:	45.7 cm		Peso Molde:	5.80000	kg		Fecha de to	ma:	19/4/2025	
PRUEBA Nº.	RECIP.Nº.	PESO RECIP. (TARA) gr	TARA +SUELO H. (gr)	TARA +SUELO S. (gr)	CONT. AGUA (%)	CONT. A GUA PROM. (%)	PESO MOLDE + SUELO H. kg	PESO SUELO H. kg	CONT. PROM. AGUA (%)	DENS. HUNEDA. (KG/M3)	DENS. SECA. (KG/M3)
1	A56	31.50	217.29	206.18	6.36	6.36	9.595	3.795	6.36	1785	1678
'	A42	30.47	224.52	212.90	6.37			3.793	0.30	1700	1076
2	A83	31.52	207.21	193.45	8.50	8.55	9.670	3.870	8.55	1820	1677
	A39	31.56	211.44	197.19	8.60	0.55	9.070	3.070	0.55	1020	1077
3	A33	30.61	232.83	213.68	10.46	10.31	9.780	3.980	10.31	1872	1697
3	A23	31.82	196.52	181.32	10.17	10.51	9.760	3.960	10.31	1072	1097
4	A96	31.56	239.82	216.75	12.46	12.51	9.795	3.995	12.51	1879	1670
4	A61	32.00	239.15	216.04	12.56	12.01	9.190	3.993	12.01	1079	1070
5	A83	31.55	242.98	209.00	19.15	18.04	9.855	4.055	18.04	1907	1616
1 3	440	00.50	004.05	004.05	40.00	18.04	9.855	4.000	10.04	1907	0101

	cambiar					agua adicionar	
M.H.	[™] ω Cont.	M.S.	C. H2O	ω Opt.		H2O	
5100	0.008041984	5059.31309	40.6869125	0.09	469.7111075	429.02	
						Х3	
						1287.07 ml	

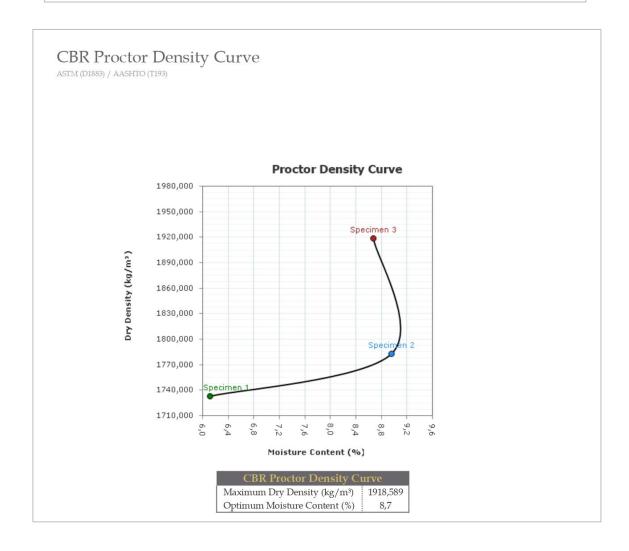
	HUMEDAD	NATURAL			
Recip.N°	A8	A65			
Peso Recip.	31.56	31.83			
Tara + Suelo H (gr)	214.81	202.9			
Tara + Suelo S (gr)	213.86	201.06			
Cont. Hume. w (%)	0.521119035	1.0872777			
Hume. Prom. %	0.80				
Hume. Prom.	0.008041984				

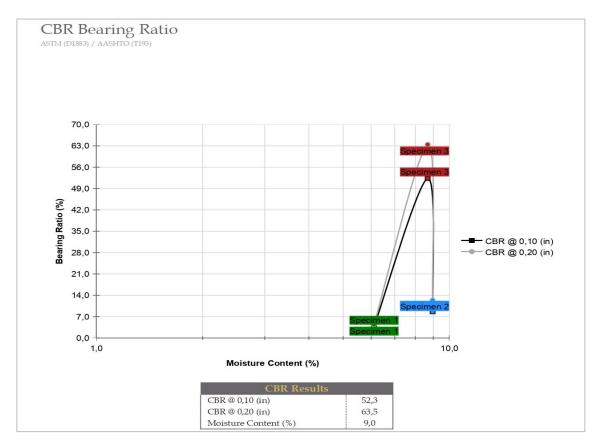
LILIMED AD MATUDAL

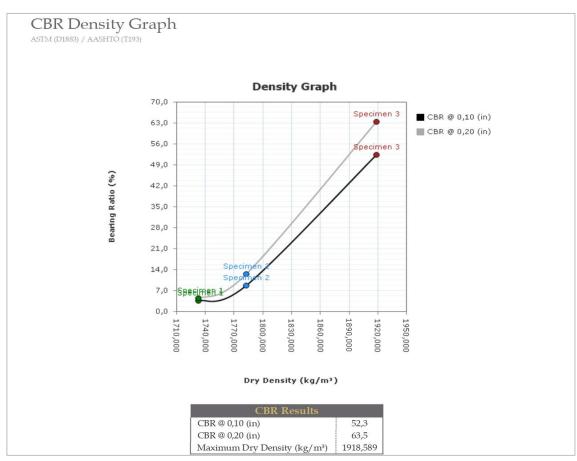
Ms= peso muestra seca MH= peso muestra humeda w adi=humedad a adicionar wop=humedad óptima wN=humedad natural


$$w_{adi} = w_{op} - w_N$$
$$Ms = \frac{MH}{1 + w_N}$$

 $H20 \ adi = Ms \times w_{adi}$


Anexo 5: Reportes de CBR obtenidos de la prensa marshal


Calicata 1


			CBR					
N° GOLPES: 56 MOLDE: C1	AN	TES SATURAF	₹	DES	SPUÉS SATUR	AR	LI	ECTURA
RECIP. N°	A79	A13	A70	A80 🔨	A78 >	A59 🖖	(0.001"
PESO RECIP (Wr) gr	31.38	31.79	31.34	31.65	31.55	31.85	Li	55.00
PESO HÚMED.+RECIP. (W1) gr	127.88	116.28	126.09	239.35	214.21	216.27	1	49.00
PESO SECO + RECIP. (W2) gr	119.97	109.53	118.74	214.74	196.11	194.69	2	46.00
PESO DE A GUA (Ww) gr	7.91	6.75	7.35	24.61	18.10	21.58	3	47.00
PESO SECO (Ws) gr	88.59	77.74	87.40	183.09	164.56	162.84	4	42.00
PESO MOLDE +SUELO HÚMED. gr		12270			12390			
N° GOLPES: 25 MOLDE: C2	AN	TES SATURAF	₹	DES	SPUÉS SATUR	AR	LI	ECTURA
RECIP. N°	A51	A64	A58	A1 🔨	A50 >	A46 ₩	(0.001"
PESO RECIP (Wr) gr	31.62	31.62	31.60	31.51	31.57	31.66	Li	70.00
PESO HÚMED.+RECIP. (W1) gr	103.98	116.64	142.43	235.58	221.71	242.74	1	72.00
PESO SECO + RECIP. (W2) gr	98.06	109.70	133.21	209.56	198.30	212.33	2	70.00
PESO DE A GUA (Ww) gr	5.92	6.94	9.22	26.02	23.41	30.41	3	71.00
PESO SECO (Ws) gr	66.44	78.08	101.61	178.05	166.73	180.67	4	70.00
PESO MOLDE +SUELO HÚMED. gr		11625			11845			
N° GOLPES: 12 MOLDE: C3	AN	TES SATURAF	₹	DES	SPUÉS SATUR	AR	LI	ECTURA
RECIP. N°	A22	A15	A90	A55 🔨	A17 >	A86 ↓	(0.001"
PESO RECIP (Wr) gr	31.61	30.22	31.55	31.66	30.53	31.38	Li	30.00
PESO HÚMED.+RECIP. (W1) gr	72.68	73.42	59.18	239.81	227.34	244.14	1	17.00
PESO SECO + RECIP. (W2) gr	72.34	69.92	56.97	210.61	199.17	209.30	2	16.00
PESO DE AGUA (Ww) gr	0.34	3.50	2.21	29.20	28.17	34.84	3	15.00
PESO SECO (Ws) gr	40.73	39.70	25.42	178.95	168.64	177.92	4	14.00
PESO MOLDE +SUELO HÚMED. gr		11035			11325			

ASTM (D1883) / AASHTO (T193)								
Before Soaking					Number			
	1	2	3	4	5	6	7	8
Specific Gravity	1,7	1,7	1,7					
Liquid Limit	26	26	26					
Plastic Limit	128	128	128					
Surcharge Weight (kg)	5,720	5,720	5,720					
Number of Blows	12	25	56					
Maximum Dry Density (kg/m³)	1835,010	1835,010	1835,010					
Optimum Moisture Content (%)	9,9	9,9	9,9					
Mold ID	C3	C2	C1					
Mold Diameter (m)	0,152	0,152	0,152					
Mold Weight (kg)	7,133	7,503	7,845					
Sample Height (m)	0,116	0,116	0,116					
Mold Volume (m³)	0,00210	0,00210	0,00210					
Moisture Content (%)	6,1	9,0	8,7					
Weight of Mold + Soil (kg)	11,035	11,625	12,270					
Weight of Soil (kg)	3,902	4,122	4,425					
Dry Density (kg/m³)	1732,622	1782,560	1918,589					
Wet Density (kg/m³)	1838,571	1942,233	2085,002					
After Soaking	1	2	3	4	5	6	7	8
Soaked Sample Height (in)	4,5509	4,5669	4,5539					
Soaked Time (Day)	4,0	4,0	4,0					
Swell (%)	-0,4	0,0	-0,3					
Moisture Content (%)	17,5	15,2	12,6					
Weight of Mold + Soil (kg)	11,325	11,845	12,390					
Weight After Soaking (kg)	4,192	4,342	4,545					
Dry Density (kg/m³)	1680,541	1776,534	1902,509					
Wet Density (kg/m³)	1975,216	2045,894	2141,545					

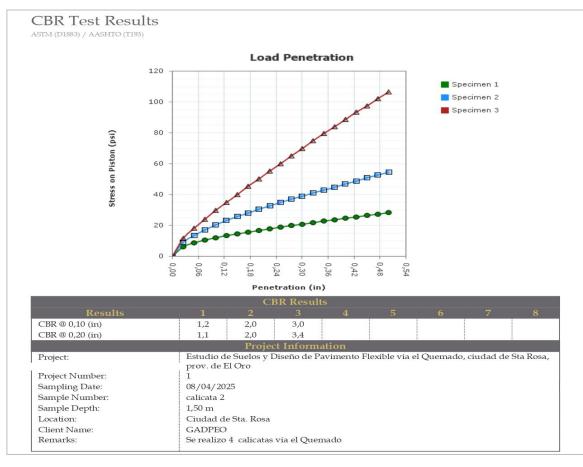
[CBR/LBR] Test - Data

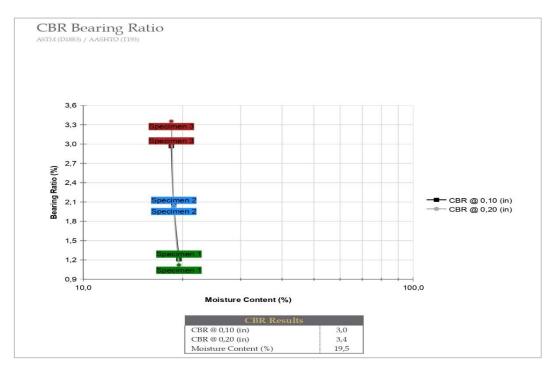
CBR Test - Specimen 1

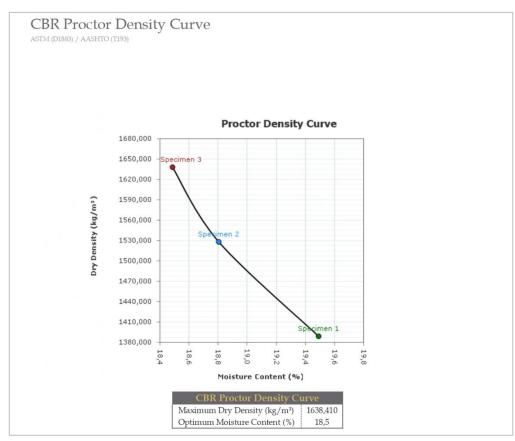
ASTM (D1883) / AASHTO (T193)

Index	Elapsed Time (hh:mm:ss)	Load (Lbf)	Displacement (in)	Corrected Load (Lbf)	Corrected Penetration (in)	Stress On Piston (psi)	CBR (%)	Corrected CBR (%)
0	00:00:00	3,065	-0,000005	0	0	0	0,0	0,0
1	00:00:40	64,821	0,025004	62	0	21	0,0	0,0
2	00:01:09	83,885	0,049998	81	0	27	0,0	0,0
3	00:01:40	99,171	0,075009	96	0	32	0,0	0,0
4	00:02:10	113,834	0,099998	111	0	37	3,7	3,7
5	00:02:41	131,176	0,125009	128	0	43	0,0	0,0
6	00:03:11	152,141	0,150012	149	0	50	0,0	0,0
7	00:03:43	176,190	0,175001	173	0	58	0,0	0,0
8	00:04:13	200,621	0,200005	198	0	66	4,4	4,4
9	00:04:42	225,228	0,224999	222	0	74	0,0	0,0
10	00:05:12	250,527	0,249996	247	0	82	0,0	0,0
11	00:05:42	275,166	0,274999	272	0	91	0,0	0,0
12	00:06:13	300,948	0,300000	298	0	99	5,2	5,2
13	00:06:44	325,996	0,325005	323	0	108	0,0	0,0
14	00:07:16	350,929	0,349996	348	0	116	0,0	0,0
15	00:07:47	375,395	0,375007	372	0	124	0,0	0,0
16	00:08:16	398,666	0,400002	396	0	132	5,7	5,7
17	00:08:46	423,311	0,425008	420	0	140	0,0	0,0
18	00:09:16	449,361	0,450000	446	0	149	0,0	0,0
19	00:09:47	475,774	0,475006	473	0	158	0,0	0,0
20	00:10:18	503,792	0,499996	501	1	167	6,4	6,4
21	00:10:18	503,856	0,500054	501	1	167	0,0	0,0

[CBR/LBR] Test - Data


CBR Test - Specimen 2 ASTIM (D1883) / AASHTO (T193)


	Elapsed Time	Load	Displacement	Corrected Load	Corrected Penetration	Stress On Piston	CBR	Corrected CBR
Index	(hh:mm:ss)	(Lbf)	(in)	(Lbf)	(in)	(psi)	(%)	(%)
0	00:00:00	57,343	0,000019	0	0	0	0,0	0,0
1	00:00:32	159,424	0,025030	102	0	34	0,0	0,0
2	00:01:03	222,091	0,050030	165	0	55	0,0	0,0
3	00:01:32	265,038	0,075020	208	0	69	0,0	0,0
4	00:02:01	316,285	0,100035	259	0	86	8,6	8,6
5	00:02:31	377,588	0,125022	320	0	107	0,0	0,0
6	00:03:01	453,158	0,150023	396	0	132	0,0	0,0
7	00:03:32	534,598	0,175025	477	0	159	0,0	0,0
8	00:04:03	616,093	0,200021	559	0	186	12,4	12,4
9	00:04:35	700,720	0,225030	643	0	214	0,0	0,0
10	00:05:07	784,968	0,250031	728	0	243	0,0	0,0
11	00:05:38	866,918	0,275020	810	0	270	0,0	0,0
12	00:06:08	946,124	0,300028	889	0	296	15,6	15,6
13	00:06:38	1.025,197	0,325032	968	0	323	0,0	0,0
14	00:07:09	1.104,005	0,350024	1.047	0	349	0,0	0,0
15	00:07:40	1.182,114	0,375032	1.125	0	375	0,0	0,0
16	00:08:11	1.258,820	0,400023	1.201	0	400	17,4	17,4
17	00:08:43	1.337,523	0,425024	1.280	0	427	0,0	0,0
18	00:09:14	1.413,751	0,450025	1.356	0	452	0,0	0,0
19	00:09:45	1.487,677	0,475027	1.430	0	477	0,0	0,0
20	00:10:14	1.558,947	0,499977	1.502	0	501	19,3	19,3


CBR Test - Specimen 3 $_{\text{ASTM (D1883) / AASHTO (T193)}}$

	Elapsed					Stress On		
	Time	Load	Displacement		Penetration	Piston	CBR	CBR
Index	(hh:mm:ss)	(Lbf)	(in)	(Lbf)	(in)	(psi)	(%)	(%)
0	00:00:00	2,371	0,006119	0	0	0	0,0	0,0
1	00:00:31	169,712	0,031125	167	0	56	0,0	0,0
2	00:01:04	416,251	0,056132	414	0	138	0,0	0,0
3	00:01:38	745,600	0,081132	743	0	248	0,0	0,0
4	00:02:12	1.133,898	0,106130	1.132	0	377	37,7	52,3
5	00:02:46	1.530,965	0,131130	1.529	0	510	0,0	0,0
6	00:03:18	1.895,059	0,156135	1.893	0	631	0,0	0,0
7	00:03:49	2.230,656	0,181126	2.228	0	743	0,0	0,0
8	00:04:21	2.538,510	0,206134	2.536	0	845	56,4	63,5
9	00:04:53	2.827,828	0,231124	2.825	0	942	0,0	0,0
10	00:05:26	3.103,827	0,256130	3.101	0	1.034	0,0	0,0
11	00:05:58	3.368,107	0,281120	3.366	0	1.122	0,0	0,0
12	00:06:30	3.623,850	0,306127	3.621	0	1.207	63,5	68,1
13	00:07:00	3.859,049	0,331124	3.857	0	1.286	0,0	0,0
14	00:07:31	4.090,235	0,356132	4.088	0	1.363	0,0	0,0
15	00:08:01	4.301,133	0,381132	4.299	0	1.433	0,0	0,0
16	00:08:32	4.464,537	0,406128	4.462	0	1.487	64,7	65,3
17	00:09:05	4.506,735	0,431131	4.504	0	1.501	0,0	0,0
18	00:09:35	4.508,298	0,456127	4.506	0	1.502	0,0	0,0
19	00:10:04	4.511,048	0,481121	4.509	0	1.503	0,0	0,0
20	00:10:31	4.563,784	0,505997	4.561	0	1.520	58,5	0,0

			CBR					
N° GOLPES: 56 MOLDE: C1	AA	NTES SATURAI	R	DES	SPUÉS SATUR	AR	L	ECTURA
RECIP. N°	A41	N3	A69	A59 🔨	A86 >	A80 ↓	(0.001"
PESO RECIP (Wr) gr	30.91	31.55	31.62	31.87	31.38	31.65	Li	21.00
PESO HÚMED.+RECIP. (W1) gr	140.03	175.57	132.71	176.76	178.30	142.23	1	165.00
PESO SECO + RECIP. (W2) gr	122.88	153.12	117.04	136.60	149.18	120.85	2	238.00
PESO DE AGUA (Ww) gr	17.15	22.45	15.67	40.16	29.12	21.38	3	296.00
PESO SECO (Ws) gr	91.97	121.57	85.42	104.73	117.80	89.20	4	334.00
PESO MOLDE +SUELO HÚMED. gr		11965			12225			
N° GOLPES: 25 MOLDE: C2	AN	NTES SATURAI	R	DE	SPUÉS SATUR	AR	L	ECTURA
RECIP. N°	A12	A62	A52	A1 🔨	A46 >	A17 ↓	(0.001"
PESO RECIP (Wr) gr	31.44	30.55	31.95	31.51	31.66	30.53	Li	117.00
PESO HÚMED.+RECIP. (W1) gr	187.61	160.20	172.44	184.63	165.60	181.95	1	272.00
PESO SECO + RECIP. (W2) gr	163.00	139.51	150.29	141.66	133.85	148.25	2	394.00
PESO DE AGUA (Ww) gr	24.61	20.69	22.15	42.97	31.75	33.70	3	415.00
PESO SECO (Ws) gr	131.56	108.96	118.34	110.15	102.19	117.72	4	422.00
PESO MOLDE +SUELO HÚMED. gr		11355			11725			
N° GOLPES: 12 MOLDE: C3	AN	NTES SATURAI	R	DE	SPUÉS SATUR	AR	L	ECTURA
RECIP. N°	A85	A43	A77	A55 🔨	A78 >	A50 ↓	(0.001"
PESO RECIP (Wr) gr	31.35	31.86	31.54	31.65	31.54	31.56	Li	68.50
PESO HÚMED.+RECIP. (W1) gr	180.65	174.49	191.51	178.46	162.61	173.83	1	283.00
PESO SECO + RECIP. (W2) gr	156.27	151.15	165.53	135.81	129.10	138.40	2	339.00
PESO DE AGUA (Ww) gr	24.38	23.34	25.98	42.65	33.51	35.43	3	348.00
PESO SECO (Ws) gr	124.92	119.29	133.99	104.16	97.56	106.84	4	353.00
PESO MOLDE +SUELO HÚMED. gr		10655		***************************************	11135	•••••		



CBR Test

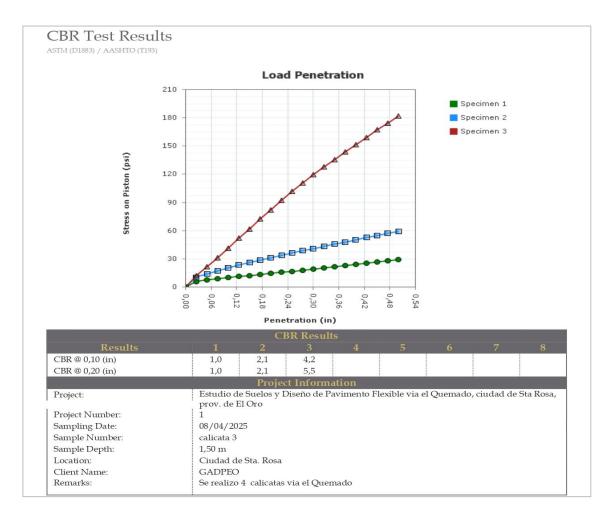
Before Soaking			1	Specimen	Number			
before 30aking								8
Specific Gravity	1,7	1,7	1,7					
Liquid Limit	26	26	26					
Plastic Limit	128	128	128					
Surcharge Weight (kg)	5,720	5,720	5,720					
Number of Blows	12	25	56					
Maximum Dry Density (kg/m³)	1619,000	1619,000	1538,000					
Optimum Moisture Content (%)	19,8	19,8	19,8					
Mold ID	C3	C2	C1					
Mold Diameter (m)	0,152	0,152	0,152					
Mold Weight (kg)	7,133	7,503	7,845					
Sample Height (m)	0,116	0,116	0,116					
Mold Volume (m³)	0,00210	0,00210	0,00210					
Moisture Content (%)	19,5	18,8	18,5					
Weight of Mold + Soil (kg)	10,655	11,355	11,965					
Weight of Soil (kg)	3,522	3,852	4,120					
Dry Density (kg/m³)	1388,829	1527,736	1638,410					
Wet Density (kg/m³)	1659,520	1815,012	1941,290					
After Soaking	1	2	3	4	5	6	7	8
Soaked Sample Height (in)	4,8514	4,8719	4,8799					
Soaked Time (Day)	4,0	4,0	4,0					
Swell (%)	6,2	6,7	6,9					
Moisture Content (%)	36,2	32,9	29,0					
Weight of Mold + Soil (kg)	11,135	11,725	12,225					
Weight After Soaking (kg)	4,002	4,222	4,380					
Dry Density (kg/m³)	1384,987	1496,851	1599,582					
Wet Density (kg/m³)	1885,690	1989,351	2063,799					

[CDR/ LDR] 1651 - Data

CBR Test - Specimen 1

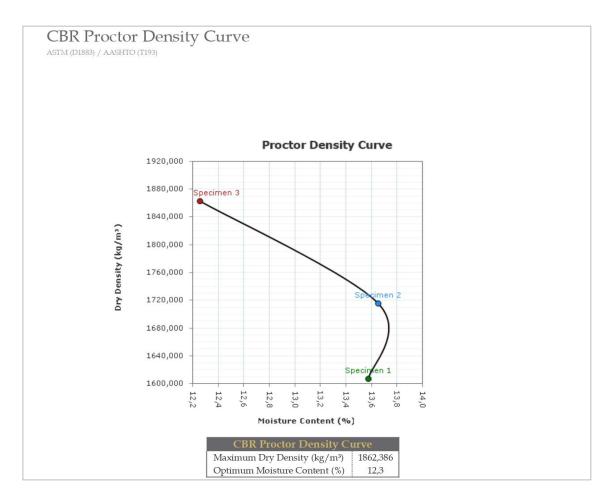
ASTM (D1883) / AASHTO (T193)

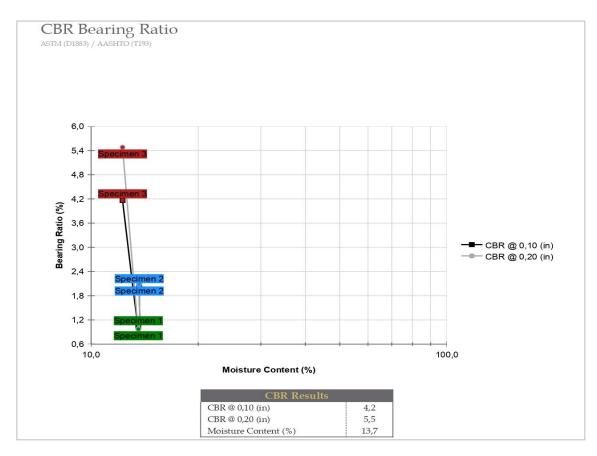
Index	Elapsed Time (hh:mm:ss)	Load (Lbf)	Displacement (in)	Corrected Load (Lbf)	Corrected Penetration (in)	Stress On Piston (psi)	CBR (%)	Corrected CBR (%)
0	00:00:00	2,295	-0,000614	0	0	0	0,0	0,0
1	00:00:29	21,279	0,024390	19	0	6	0,0	0,0
2	00:01:00	28,780	0,049400	26	0	9	0,0	0,0
3	00:01:31	34,096	0,074387	32	0	11	0,0	0,0
4	00:02:02	38,581	0,099389	36	0	12	1,2	1,2
5	00:02:33	42,567	0,124390	40	0	13	0,0	0,0
6	00:03:02	46,225	0,149389	44	0	15	0,0	0,0
7	00:03:31	49,654	0,174393	47	0	16	0,0	0,0
8	00:04:00	52,797	0,199401	51	0	17	1,1	1,1
9	00:04:30	55,998	0,224399	54	0	18	0,0	0,0
10	00:05:01	59,110	0,249390	57	0	19	0,0	0,0
11	00:05:32	62,019	0,274397	60	0	20	0,0	0,0
12	00:06:03	64,962	0,299391	63	0	21	1,1	1,1
13	00:06:34	67,899	0,324388	66	0	22	0,0	0,0
14	00:07:03	70,738	0,349391	68	0	23	0,0	0,0
15	00:07:32	73,467	0,374392	71	0	24	0,0	0,0
16	00:08:01	76,170	0,399387	74	0	25	1,1	1,1
17	00:08:31	78,790	0,424387	76	0	25	0,0	0,0
18	00:09:01	81,658	0,449390	79	0	26	0,0	0,0
19	00:09:32	84,181	0,474393	82	0	27	0,0	0,0
20	00:10:03	86,922	0,499079	85	0	28	1,1	1,1

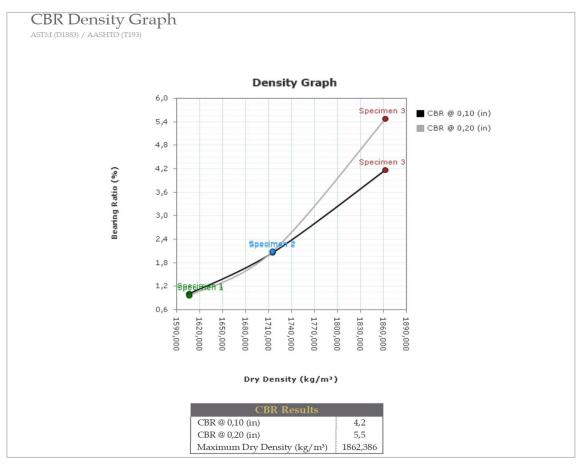

CBR Test - Specimen 2

	Elapsed				Corrected	Stress On		
	Time	Load	Displacement	Load	Penetration	Piston	CBR	CBR
Index	(hh:mm:ss)	(Lbf)	(in)	(Lbf)	(in)	(psi)	(%)	(%)
0	00:00:00	6,634	-0,000035	0	0	0	0,0	0,0
1	00:00:29	33,771	0,024972	27	0	9	0,0	0,0
2	00:00:58	46,636	0,049969	40	0	13	0,0	0,0
3	00:01:27	58,054	0,074978	51	0	17	0,0	0,0
4	00:01:57	67,967	0,099965	61	0	20	2,0	2,0
5	00:02:28	76,374	0,124970	70	0	23	0,0	0,0
6	00:02:58	83,925	0,149969	77	0	26	0,0	0,0
7	00:03:30	91,132	0,174975	84	0	28	0,0	0,0
8	00:04:01	98,189	0,199977	92	0	31	2,0	2,0
9	00:04:30	104,777	0,224981	98	0	33	0,0	0,0
10	00:04:59	111,254	0,249974	105	0	35	0,0	0,0
11	00:05:29	117,496	0,274973	111	0	37	0,0	0,0
12	00:05:59	123,761	0,299971	117	0	39	2,1	2,1
13	00:06:29	129,801	0,324969	123	0	41	0,0	0,0
14	00:07:00	135,734	0,349969	129	0	43	0,0	0,0
15	00:07:31	141,345	0,374965	135	0	45	0,0	0,0
16	00:08:02	147,301	0,399966	141	0	47	2,0	2,0
17	00:08:32	153,317	0,424973	147	0	49	0,0	0,0
18	00:09:01	159,021	0,449967	152	0	51	0,0	0,0
19	00:09:30	164,602	0,474972	158	0	53	0,0	0,0
20	00:10:00	170,399	0,499911	164	0	55	2,1	2,1

CBR Test - Specimen 3


	1000			10 - V		w 33		
	Elapsed Time	Load	Displacement	Corrected Load	Corrected Penetration	Stress On Piston	CBR	Corrected CBR
Index	(hh:mm:ss)	(Lbf)	(in)	(Lbf)	(in)	(psi)	(%)	(%)
0	00:00:00	4,883	0,000366	0	0	0	0,0	0,0
1	00:00:31	39,922	0,025376	35	0	12	0,0	0,0
2	00:01:01	59,303	0,050369	54	0	18	0,0	0,0
3	00:01:30	76,721	0,075371	72	0	24	0,0	0,0
4	00:01:59	93,899	0,100378	89	0	30	3,0	3,0
5	00:02:29	110,140	0,125375	105	0	35	0,0	0,0
6	00:03:00	125,384	0,150378	121	0	40	0,0	0,0
7	00:03:30	140,748	0,175367	136	0	45	0,0	0,0
8	00:04:02	155,804	0,200370	151	0	50	3,4	3,4
9	00:04:33	170,615	0,225368	166	0	55	0,0	0,0
10	00:05:02	185,035	0,250369	180	0	60	0,0	0,0
11	00:05:31	199,720	0,275373	195	0	65	0,0	0,0
12	00:06:01	214,356	0,300372	209	0	70	3,7	3,7
13	00:06:31	229,068	0,325371	224	0	75	0,0	0,0
14	00:07:02	243,316	0,350373	238	0	79	0,0	0,0
15	00:07:32	257,058	0,375377	252	0	84	0,0	0,0
16	00:08:04	271,031	0,400375	266	0	89	3,9	3,9
17	00:08:36	284,834	0,425379	280	0	93	0,0	0,0
18	00:09:04	297,788	0,450368	293	0	98	0,0	0,0
19	00:09:33	311,203	0,475380	306	0	102	0,0	0,0
20	00:10:03	324,267	0,500220	319	0	106	4,1	4,1


			CBR					
N° GOLPES: 56 MOLDE: C6	AN	ITES SATURA	R	DESPUÉS SATURAR				CTURA
RECIP. N°	A60	A37	A72	A60 🔨	A37 >	A72 ↓	(0.001"
PESO RECIP (Wr) gr	31.36	30.38	30.78	31.36	30.38	30.78	Li	40.00
PESO HÚMED.+RECIP. (W1) gr	64.95	61.24	69.63	233.35	216.93	208.46	1	
PESO SECO + RECIP. (W2) gr	61.41	57.84	65.28	191.98	183.41	180.46	2	
PESO DE AGUA (Ww) gr	3.54	3.40	4.35	41.37	33.52	28.00	3	
PESO SECO (Ws) gr	30.05	27.46	34.50	160.62	153.03	149.68	4	265.00
PESO MOLDE +SUELO HÚMED. gr		12145			12355			
N° GOLPES: 25 MOLDE: C5	AN	NTES SATURA	R	DE	SPUÉS SATUR	AR	LI	CTURA
RECIP. N°	A48	A5	A16	A48 ٨	A5 >	A16 🖖	(0.001"
PESO RECIP (Wr) gr	31.49	30.60	30.54	31.49	30.60	30.54	Li	99.00
PESO HÚMED.+RECIP. (W1) gr	150.33	138.80	156.68	221.85	219.70	195.87	1	
PESO SECO + RECIP. (W2) gr	136.10	125.80	141.48	178.24	183.40	167.26	2	
PESO DE AGUA (Ww) gr	14.23	13.00	15.20	43.61	36.30	28.61	3	
PESO SECO (Ws) gr	104.61	95.20	110.94	146.75	152.80	136.72	4	347.00
PESO MOLDE +SUELO HÚMED. gr		12355			12690			
N° GOLPES: 12 MOLDE: C4	AN	NTES SATURA	R	DE	SPUÉS SATUR	AR	LI	CTURA
RECIP. N°	A68	A73	A61	A68 🔨	A73 >	A61 ∜	(0.001"
PESO RECIP (Wr) gr	31.54	31.55	32.03	31.54	31.55	32.03	Li	140.00
PESO HÚMED.+RECIP. (W1) gr	144.75	155.41	163.51	218.23	199.28	189.55	1	
PESO SECO + RECIP. (W2) gr	131.39	140.60	147.60	176.19	167.58	158.43	2	
PESO DE AGUA (Ww) gr	13.36	14.81	15.91	42.04	31.70	31.12	3	
PESO SECO (Ws) gr	99.85	109.05	115.57	144.65	136.03	126.40	4	350.00
PESO MOLDE +SUELO HÚMED. gr		11645			12050			



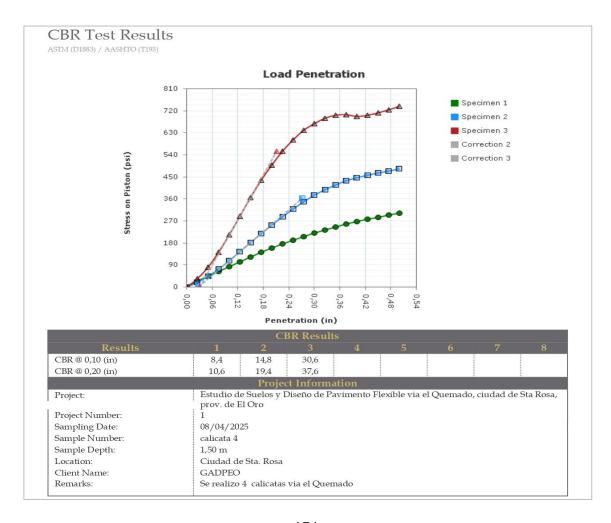
CBR Test

				Specimen	Number			
Specific Gravity	1,7	1,7	1,7					
Liquid Limit	26	26	26					
Plastic Limit	128	128	128					
Surcharge Weight (kg)	5,720	5,720	5,720					
Number of Blows	12	25	56					
Maximum Dry Density (kg/m³)	1841,820	1841,820	1749,720					
Optimum Moisture Content (%)	13,4	13,4	13,4					
Mold ID	C4	C5	C6					
Mold Diameter (m)	0,152	0,152	0,152					
Mold Weight (kg)	7,773	8,218	7,708					
Sample Height (m)	0,116	0,116	0,116					
Mold Volume (m³)	0,00210	0,00210	0,00210					
Moisture Content (%)	13,6	13,7	12,3					
Weight of Mold + Soil (kg)	11,645	12,355	12,145					
Weight of Soil (kg)	3,872	4,137	4,437					
Dry Density (kg/m³)	1606,359	1715,130	1862,386					
Wet Density (kg/m³)	1824,436	1949,300	2090,656					
After Soaking	1	2	3	4	5	6	7	8
Soaked Sample Height (in)	4,7769	4,8149	4,7919					
Soaked Time (Day)	4,0	4,0	4,0					
Swell (%)	4,6	5,4	4,9					
Moisture Content (%)	52976,9	24,8	22,1					
Weight of Mold + Soil (kg)	12,050	12,690	12,355					
Weight After Soaking (kg)	4,277	4,472	4,647					
Dry Density (kg/m³)	3,797	1688,421	1792,960					
Wet Density (kg/m³)	2015,267	2107,147	2189,605					

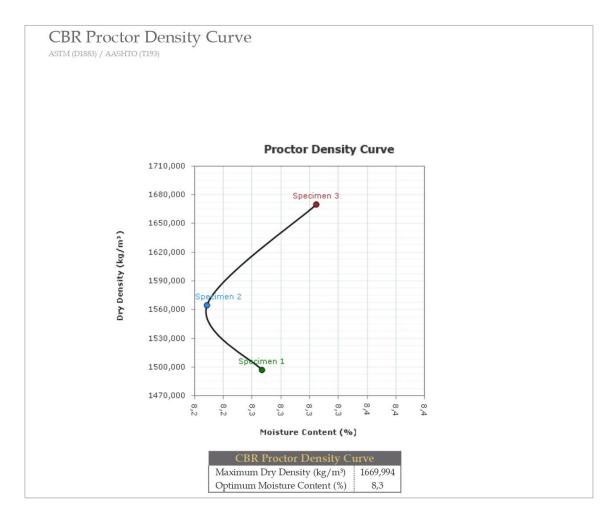
CBR Test - Specimen 1

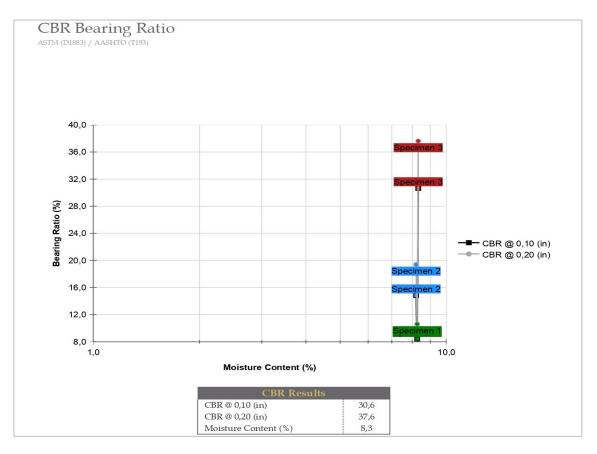
ASTM (D1883) / AASHTO (T193)

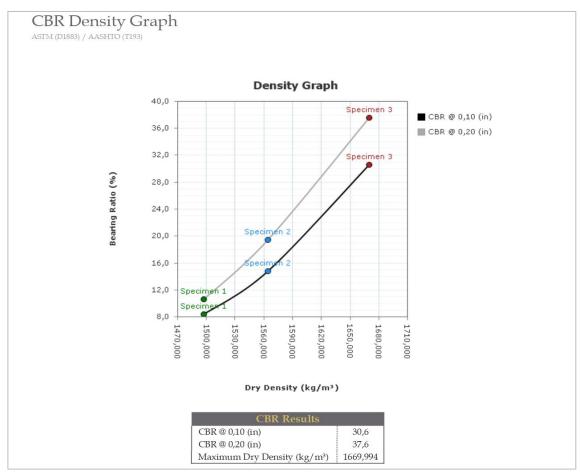
	Elapsed	3 2		Corrected	Corrected	Stress On	222	Corrected
Index	Time (hh:mm:ss)	Load (Lbf)	Displacement (in)	Load (Lbf)	Penetration (in)	Piston (psi)	CBR (%)	CBR (%)
0	00:00:00	12,596	0,000289	0	0	0	0,0	0,0
1	00:00:30	30,130	0,025303	18	0	6	0,0	0,0
2	00:00:59	35,422	0,050295	23	0	8	0,0	0,0
3	00:01:28	39,437	0,075300	27	0	9	0,0	0,0
4	00:01:57	43,066	0,100300	30	0	10	1,0	1,0
5	00:02:27	46,470	0,125299	34	0	11	0,0	0,0
6	00:02:58	49,741	0,150289	37	0	12	0,0	0,0
7	00:03:28	53,014	0,175297	40	0	13	0,0	0,0
8	00:04:00	56,351	0,200295	44	0	15	1,0	1,0
9	00:04:30	59,793	0,225294	47	0	16	0,0	0,0
10	00:04:59	63,116	0,250303	51	0	17	0,0	0,0
11	00:05:29	66,524	0,275297	54	0	18	0,0	0,0
12	00:05:58	69,984	0,300301	57	0	19	1,0	1,0
13	00:06:28	73,291	0,325294	61	0	20	0,0	0,0
14	00:06:59	76,933	0,350301	64	0	21	0,0	0,0
15	00:07:29	80,506	0,375296	68	0	23	0,0	0,0
16	00:08:01	84,385	0,400299	72	0	24	1,0	1,0
17	00:08:31	88,247	0,425298	76	0	25	0,0	0,0
18	00:09:00	92,163	0,450302	80	0	27	0,0	0,0
19	00:09:29	96,191	0,475304	84	0	28	0,0	0,0
20	00:09:59	100,174	0,500059	88	0	29	1,1	1,1


CBR Test - Specimen 2

				Corrected	Corrected	Stress On		Corrected
	Time	Load	Displacement	Load	Penetration	Piston	CBR	CBR
Index	(hh:mm:ss)	(Lbf)	(in)	(Lbf)	(in)	(psi)	(%)	(%)
0	00:00:00	-14,415	-0,000034	0	0	0	0,0	0,0
1	00:00:30	16,154	0,024972	31	0	10	0,0	0,0
2	00:01:01	27,641	0,049969	42	0	14	0,0	0,0
3	00:01:33	38,037	0,074978	52	0	17	0,0	0,0
4	00:02:04	47,338	0,099973	62	0	21	2,1	2,1
5	00:02:35	55,842	0,124967	70	0	23	0,0	0,0
6	00:03:03	63,872	0,149967	78	0	26	0,0	0,0
7	00:03:32	71,836	0,174969	86	0	29	0,0	0,0
8	00:04:01	79,313	0,199978	94	0	31	2,1	2,1
9	00:04:32	86,808	0,224974	101	0	34	0,0	0,0
10	00:05:03	94,307	0,249966	109	0	36	0,0	0,0
11	00:05:35	101,478	0,274978	116	0	39	0,0	0,0
12	00:06:06	108,621	0,299980	123	0	41	2,2	2,2
13	00:06:37	115,444	0,324971	130	0	43	0,0	0,0
14	00:07:05	122,490	0,349979	137	0	46	0,0	0,0
15	00:07:34	129,381	0,374974	144	0	48	0,0	0,0
16	00:08:03	136,092	0,399975	151	0	50	2,2	2,2
17	00:08:34	143,180	0,424973	158	0	53	0,0	0,0
18	00:09:05	150,110	0,449975	165	0	55	0,0	0,0
19	00:09:36	156,999	0,474972	171	0	57	0,0	0,0
20	00:10:07	163,977	0,499985	178	1	59	2,3	2,3


CBR Test - Specimen 3


Index	Elapsed Time (hh:mm:ss)	Load (Lbf)	Displacement (in)	Corrected Load (Lbf)	Corrected Penetration (in)	Stress On Piston (psi)	CBR (%)	Corrected CBR (%)
0	00:00:00	11,175	0,000010	0	0	0	0,0	0,0
1	00:00:30	47,332	0,025022	36	0	12	0,0	0,0
2	00:01:00	75,466	0,050021	64	0	21	0,0	0,0
3	00:01:31	105,099	0,075020	94	0	31	0,0	0,0
4	00:02:04	136,053	0,100010	125	0	42	4,2	4,2
5	00:02:35	167,259	0,125025	156	0	52	0,0	0,0
6	00:03:03	197,248	0,150026	186	0	62	0,0	0,0
7	00:03:33	228,421	0,175012	217	0	72	0,0	0,0
8	00:04:02	257,776	0,200013	247	0	82	5,5	5,5
9	00:04:33	287,397	0,225013	276	0	92	0,0	0,0
10	00:05:04	315,869	0,250012	305	0	102	0,0	0,0
11	00:05:37	343,797	0,275016	333	0	111	0,0	0,0
12	00:06:08	369,304	0,300021	358	0	119	6,3	6,3
13	00:06:39	394,669	0,325013	383	0	128	0,0	0,0
14	00:07:08	418,191	0,350020	407	0	136	0,0	0,0
15	00:07:38	442,488	0,375019	431	0	144	0,0	0,0
16	00:08:08	465,903	0,400018	455	0	152	6,6	6,6
17	00:08:39	489,236	0,425010	478	0	159	0,0	0,0
18	00:09:10	512,640	0,450017	501	0	167	0,0	0,0
19	00:09:40	535,150	0,475014	524	0	175	0,0	0,0
20	00:10:11	556,999	0,499927	546	0	182	7,0	7,0


			CBR					
N° GOLPES: 56 MOLDE: C7	AN	NTES SATURA	R	DES	SPUÉS SATUR	AR	LE	CTURA
RECIP. N°	N1	A28	A44	A49 🔨	A52 >	A36 ↓	ď	.001"
PESO RECIP (Wr) gr	31.48	31.43	29.89	29.87	31.92	31.84	Li	30.00
PESO HÚMED.+RECIP. (W1) gr	163.03	162.21	166.82	239.97	22.48	233.23	1	10.00
PESO SECO + RECIP. (W2) gr	152.82	152.13	156.46	202.54	195.35	198.04	2	4.00
PESO DE AGUA (Ww) gr	10.21	10.08	10.36	37.43	-172.87	35.19	3	3.00
PESO SECO (Ws) gr	121.34	120.70	126.57	172.67	163.43	166.20	4	1.00
PESO MOLDE +SUELO HÚMED. gr		11170			11500			
N° GOLPES: 25 MOLDE: C8	AN	NTES SATURA	R	DES	SPUÉS SATUR	AR	LE	CTURA
RECIP. N°	A42	A23	A96	A43 🔨	A77 >	A12 ↓	C	.001"
PESO RECIP (Wr) gr	30.46	31.82	31.57	31.85	31.54	31.44	Li	30.00
PESO HÚMED.+RECIP. (W1) gr	172.06	166.30	173.50	231.55	233.83	248.27	1	19.00
PESO SECO + RECIP. (W2) gr	161.14	156.14	162.89	196.01	198.86	205.29	2	13.00
PESO DE AGUA (Ww) gr	10.92	10.16	10.61	35.54	34.97	42.98	3	10.50
PESO SECO (Ws) gr	130.68	124.32	131.32	164.16	167.32	173.85	4	4.00
PESO MOLDE +SUELO HÚMED. gr		11055			11505			
N° GOLPES: 12 MOLDE: C9	AN	NTES SATURA	R	DES	SPUÉS SATUR	AR	LE	CTURA
RECIP. N°	A95	F1	A65	A41 🔨	N3 >	A62 ∀	C	.001"
PESO RECIP (Wr) gr	31.41	31.44	31.83	30.89	31.53	30.53	Li	30.00
PESO HÚMED.+RECIP. (W1) gr	191.87	180.50	184.96	236.42	226.49	245.44	1	18.00
PESO SECO + RECIP. (W2) gr	179.42	169.16	173.44	196.53	188.68	196.94	2	10.00
PESO DE AGUA (Ww) gr	12.45	11.34	11.52	39.89	37.81	48.50	3	4.00
PESO SECO (Ws) gr	148.01	137.72	141.61	165.64	157.15	166.41	4	2.00
PESO MOLDE +SUELO HÚMED. gr		10900			11440			

Defens Casting	Specimen Number									
Specific Gravity	1,7	1,7	1,7							
Liquid Limit	26	26	26							
Plastic Limit	128	128	128							
Surcharge Weight (kg)	5,720	5,720	5,720							
Number of Blows	12	25	56							
Maximum Dry Density (kg/m³)	1608,640	1608,640	1608,640							
Optimum Moisture Content (%)	9,3	9,3	9,3							
Mold ID	C9	C8	C7							
Mold Diameter (m)	0,153	0,153	0,153							
Mold Weight (kg)	7,460	7,463	7,331							
Sample Height (m)	0,116	0,116	0,116							
Mold Volume (m³)	0,00213	0,00213	0,00213							
Moisture Content (%)	8,3	8,2	8,3							
Weight of Mold + Soil (kg)	10,900	11,055	11,170							
Weight of Soil (kg)	3,440	3,592	3,839							
Dry Density (kg/m³)	1497,210	1564,196	1669,994							
Wet Density (kg/m³)	1620,883	1692,504	1808,887							
After Soaking	1	2	3	4	5	6	7	8		
Soaked Sample Height (in)	4,5409	4,5409	4,5379							
Soaked Time (Day)	4,0	4,0	4,0							
Swell (%)	-0,6	-0,6	-0,6							
Moisture Content (%)	25,9	-26,1	19,1							
Weight of Mold + Soil (kg)	11,440	11,505	11,500							
Weight After Soaking (kg)	3,980	4,042	4,169							
Dry Density (kg/m³)	1489,628	2577,856	1649,015							
Wet Density (kg/m³)	1875,324	1904,538	1964 378							

CBR Test - Specimen 1

ASTM (D1883) / AASHTO (T193)

	Elapsed		D: 1	Corrected	Corrected	Stress On	CP.P.	Corrected
Index	Time (hh:mm:ss)	Load (Lbf)	Displacement (in)	Load (Lbf)	Penetration (in)	Piston (psi)	CBR (%)	CBR (%)
0	00:00:00	1,109	0,000752	0	0	0	0,0	0,0
1	00:00:30	74,858	0,025768	74	0	25	0,0	0,0
2	00:01:00	133,483	0,050766	132	0	44	0,0	0,0
3	00:01:31	193,239	0,075753	192	0	64	0,0	0,0
4	00:02:02	253,354	0,100755	252	0	84	8,4	8,4
5	00:02:34	313,941	0,125752	313	0	104	0,0	0,0
6	00:03:07	372,964	0,150753	372	0	124	0,0	0,0
7	00:03:38	427,351	0,175756	426	0	142	0,0	0,0
8	00:04:08	478,583	0,200767	477	0	159	10,6	10,6
9	00:04:38	529,361	0,225766	528	0	176	0,0	0,0
10	00:05:08	576,050	0,250757	575	0	192	0,0	0,0
11	00:05:39	621,139	0,275767	620	0	207	0,0	0,0
12	00:06:10	663,873	0,300760	663	0	221	11,6	11,6
13	00:06:41	703,734	0,325753	703	0	234	0,0	0,0
14	00:07:12	741,062	0,350762	740	0	247	0,0	0,0
15	00:07:42	775,809	0,375753	775	0	258	0,0	0,0
16	00:08:12	806,209	0,400766	805	0	268	11,7	11,7
17	00:08:42	834,828	0,425767	834	0	278	0,0	0,0
18	00:09:12	858,896	0,450760	858	0	286	0,0	0,0
19	00:09:42	883,777	0,475763	883	0	294	0,0	0,0
20	00:10:13	907,546	0,500670	906	0	302	11,6	11,6

CBR Test - Specimen 2

ASTM (D1883) / AASHTO (T193)

	Flores			Corrected	Corrected	Stress On		Corrected
	Elapsed Time	Load	Displacement	Load	Penetration	Piston	CBR	CBR
Index	(hh:mm:ss)	(Lbf)		(Lbf)		(psi)	(%)	(%)
0	00:00:00	0,856	0,000685	0	0	0	0,0	0,0
1	00:00:31	62,121	0,025690	61	0	20	0,0	0,0
2	00:01:02	134,226	0,050688	133	0	44	0,0	0,0
3	00:01:34	223,929	0,075695	223	0	74	0,0	0,0
4	00:02:05	326,086	0,100690	325	0	108	10,8	14,8
5	00:02:37	433,372	0,125699	433	0	144	0,0	0,0
6	00:03:09	544,122	0,150688	543	0	181	0,0	0,0
7	00:03:41	655,683	0,175687	655	0	218	0,0	0,0
8	00:04:12	762,535	0,200688	762	0	254	16,9	19,4
9	00:04:42	863,141	0,225696	862	0	287	0,0	0,0
10	00:05:13	958,494	0,250691	958	0	319	0,0	0,0
11	00:05:44	1.045,407	0,275685	1.045	0	348	0,0	0,0
12	00:06:15	1.124,371	0,300695	1.124	0	375	19,7	21,1
13	00:06:46	1.196,009	0,325699	1.195	0	398	0,0	0,0
14	00:07:16	1.256,288	0,350692	1.255	0	418	0,0	0,0
15	00:07:47	1.305,481	0,375689	1.305	0	435	0,0	0,0
16	00:08:16	1.340,789	0,400692	1.340	0	447	19,4	19,9
17	00:08:45	1.371,846	0,425697	1.371	0	457	0,0	0,0
18	00:09:15	1.396,826	0,450688	1.396	0	465	0,0	0,0
19	00:09:45	1.422,970	0,475695	1.422	0	474	0,0	0,0
20	00:10:15	1.450,860	0,500568	1.450	0	483	18,6	0,0

CBR Test - Specimen 3

ASTM (D1883) / AASHTO (T193)

				(F225-117-125)				
	Elapsed			Corrected		Stress On		Corrected
Index	Time (hh:mm:ss)	Load (Lbf)	Displacement (in)	Load (Lbf)	Penetration (in)	Piston (psi)	CBR (%)	CBR (%)
0	00:00:00	1,342	0,000106	0	0	0	0,0	0,0
1	00:00:30	107,500	0,025123	106	0	35	0,0	0,0
2	00:01:00	241,720	0,050116	240	0	80	0,0	0,0
3	00:01:33	426,237	0,075117	425	0	142	0,0	0,0
4	00:02:06	639,926	0,100113	639	0	213	21,3	30,6
5	00:02:39	869,525	0,125117	868	0	289	0,0	0,0
6	00:03:11	1.099,645	0,150122	1.098	0	366	0,0	0,0
7	00:03:43	1.311,817	0,175120	1.310	0	437	0,0	0,0
8	00:04:14	1.499,600	0,200116	1.498	0	499	33,3	37,6
9	00:04:45	1.662,791	0,225109	1.661	0	554	0,0	0,0
10	00:05:16	1.802,251	0,250106	1.801	0	600	0,0	0,0
11	00:05:47	1.920,935	0,275115	1.920	0	640	0,0	0,0
12	00:06:19	2.007,873	0,300107	2.007	0	669	35,2	36,4
13	00:06:50	2.067,075	0,325109	2.066	0	689	0,0	0,0
14	00:07:22	2.108,344	0,350108	2.107	0	702	0,0	0,0
15	00:07:51	2.112,554	0,375118	2.111	0	704	0,0	0,0
16	00:08:19	2.094,126	0,400118	2.093	0	698	30,3	30,6
17	00:08:48	2.105,216	0,425118	2.104	0	701	0,0	0,0
18	00:09:18	2.138,885	0,450119	2.138	0	713	0,0	0,0
19	00:09:49	2.176,079	0,475110	2.175	0	725	0,0	0,0
20	00:10:19	2.218,144	0,499987	2.217	0	739	28,4	0,0

Anexo 6: Tabla nacional de pesos y dimensiones posibles combinaciones

TIPO	DISTRIBUCIÓN MÁXIMA DE CARGA POR EJE		DESCRIPCIÓN		PESO MÁXIMO PERMITIDO (Ton.)	MÁXIN	NGITUDI IAS PERN (metros) Ancho	MITICAS
2 D	20		ΙΙ	CAMIÓN DE 2 EJES PEQUEÑO	7	5,00	2,60	3,00
2DA	2DA		ΙĪ	CAMIÓN DE 2 EJES MEDIANOS	10	7,50	2,60	3,50
2DB	2 DB		ΙĪ	CAMIÓN DE 2 EJES GRANDES	18	12,20	2,60	4,10
3-A	3A 7 20		I II	CAMIÓN DE 3 EJES	27	12,20	2,60	4,10
4-C	4C		I III	CAMIÓN DE 4 EJES	31	12,20	2,60	4,10
4-0 ocrorus	4-0 12 20		II II	CAMIÓN CON TAMDEM DIRECCIONALY TAMDEM POSTERIOR	32	12,20	2,60	4,10
V2DB		-	ΙĪ	VOLQUETA DE DOS EJES 8 m ⁵	18	12,20	2,60	4,10
V3A			I II	VOLQUETA DE TRES EJES 10-14 m²	27	12,20	2,60	4,10
vzs			I II	VOLQUETA ZS DE 3 EJES 16 m ⁵	27	12,20	2,60	4,10
Т2	72		ΙĪ	TRACTO CAMIÓN DE 2 EJES	18	8,50	2,60	4,10
тз	73 7 20	- 00 -	I II	TRACTO CAMIÓN DE 3 EJES	27	8,50	2,60	4,10
83	53	- 000	III	SEMIREMOLQUE DE 3 E/ES	24	13,00	2,60	4,10
S2	\$2 P 20	- 00	II	SEMIREMOLQUE DE 2 EJES	20	13,00	2,60	4,10
S1	S1	-	Ī	SEMIREMOLQUE DE 1 EJE	11	13,00	2,60	4,10
R2	R2		II	REMOLQUE DE 2 EJES	22	10,00	2,60	4,10
R3	R3		I II	REMOLQUE DE 3 EJES	31	10,00	2,60	4,10
B1	81		Ī	REMOLQUE BALANCEADO DE 1 EJE	11	10,00	2,60	4,10
В2	82		II	REMOLQUE BALANCEADO DE 2 EJES	20	10,00	2,60	4,10
В3	B3	-000-	III	REMOLQUE BALANCEADO DE 3 EJES	24	10,00	2,60	4,10

TIPO	DISTRIBUCIÓN MÁXIMA DE CARGA POR EJE	DESCRIPCIÓN		PESO BRUTO VEHICULAR MÁXIMO PERMITIDO (toneladas)	MÁXIN	NGITUDI IAS PERN (metros) Ancho	AITIDAS
2S1	2S1 7 11 11	Goo III	TRACTO CAMIÓN DE 2 EJES Y SEMIREMOLQUE DE 1EJE	29	20,50	2,60	4,30
282	252 7 11 20	Coo li II	TRACTO CAMIÓN DE 2 EJES Y SEMIREMOLQUE DE 2 EJES	38	20,50	2,60	4,30
293	253 7 11 24	do ooo I I III	TRACTO CAMIÓN DE 2 EJES Y SEMIREMOLQUE DE 3 EJES	42	20,50	2,60	4,30
3S1	351 7 20 11	 oo o I I	TRACTO CAMIÓN DE 3 EJES Y SEMIREMOLQUE DE 1 EJE	38	20,50	2,60	4,30
352	352 7 20 20	€ oo oo I II II	TRACTO CAMIÓN DE 3 EJES Y SEMIREMOLQUE DE 2 EJES	47	20,50	2,60	4,30
353	3S3 7 20 24	€ oo ooo I II III	TRACTO CAMIÓN DE 3 EJES Y SEMIREMOLQUE DE 3 EJES	48	20,50	2,60	4,30
2R2	2R2 7 11 11 11		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE DE 2 EJES	40	20,50	2,60	4,30
2R3	2R3 7 11 11 20		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
3R2	3R2 7 20 11 11		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE DE 2 EJES	48	20,50	2,60	4,30
3R3	3R3 7 20 11 20		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
2B1	2B1	I	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 1 EJES	29	20,50	2,60	4,30
2B2	2B2 7 11 20	o	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 2 EJES	38	20,50	2,60	4,30
2B3	283 7 11 24		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 3 EJES	42	20,50	2,60	4,30
3B1	3B1 7 20 11	———I II I	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE BALANCEADO DE 1 EJES	38	20,50	2,60	4,30
3B2	302 7 20 20	——IIII	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE BALANCEADO DE 2 EJES	47	20,50	2,60	4,30
3B3	3B3 7 20 24		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE BALANCEADO DE 3 EJES	48	20,50	2,60	4,30

Anexo 7: Metrado de la vía

4 D G C I G 4 G	ÁREAS	S (m2)	VOL PARC	CIALES (m3)	VOL ACUMUL	LADO (m3)
ABSCISAS	Corte	Relleno	 Corte	Relleno	Corte	Relleno
0+000.00	3.63	0.01	0.00	0.00	0.00	0.00
0+020.00	2.03	0.04	56.60	0.50	56.60	0.50
0+040.00	2.67	0.01	47.00	0.50	103.60	1.00
0+060.00	2.68	0.02	53.50	0.30	157.10	1.30
0+080.00	3.43	0	61.10	0.20	218.20	1.50
0+100.00	4.49	0	79.20	0.00	297.40	1.50
0+120.00	6.01	0	105.00	0.00	402.40	1.50
0+140.00	7.47	0	134.80	0.00	537.20	1.50
0+160.00	8.68	0	161.50	0.00	698.70	1.50
0+180.00	10.03	0	187.10	0.00	885.80	1.50
0+200.00	11.99	0	220.20	0.00	1,106.00	1.50
0+220.00	14.14	0	261.30	0.00	1,367.30	1.50
0+240.00	14.89	0	290.30	0.00	1,657.60	1.50
0+260.00	15.86	0	307.50	0.00	1,965.10	1.50
0+280.00	14.1	0	299.60	0.00	2,264.70	1.50
0+300.00	13.49	0	275.90	0.00	2,540.60	1.50
0+320.00	11.44	0	249.30	0.00	2,789.90	1.50
0+340.00	9.62	0	210.60	0.00	3,000.50	1.50
0+360.00	10.4	0	200.20	0.00	3,200.70	1.50
0+380.00	7.78	0	181.80	0.00	3,382.50	1.50
0+400.00	6.25	0	140.30	0.00	3,522.80	1.50
0+420.00	5.33	0	115.80	0.00	3,638.60	1.50
0+440.00	5.81	0	111.40	0.00	3,750.00	1.50
0+460.00	2.79	0.03	86.00	0.30	3,836.00	1.80
0+480.00	0.16	0.38	29.50	4.10	3,865.50	5.90
0+500.00	0	1.33	1.60	17.10	3,867.10	23.00
0+520.00	0	3.89	0.00	52.20	3,867.10	75.20
0+540.00	0	5.43	0.00	93.20	3,867.10	168.40
0+560.00	0	7.04	0.00	124.70	3,867.10	293.10
0+580.00	0	7.39	0.00	144.30	3,867.10	437.40
0+600.00	0	6.88	0.00	142.70	3,867.10	580.10
0+620.00	0	7.59	0.00	144.70	3,867.10	724.80
0+640.00	0	6.66	0.00	142.50	3,867.10	867.30
0+660.00	0	6.02	0.00	126.80	3,867.10	994.10
0+680.00	0	4.51	0.00	105.30	3,867.10	1,099.40
0+700.00	0	3	0.00	75.10	3,867.10	1,174.50
0+720.00	0	2.12	0.00	51.20	3,867.10	1,225.70
0+740.00	0	1.5	0.00	36.20	3,867.10	1,261.90
0+760.00	0.21	0.31	2.10	18.10	3,869.20	1,280.00
0+780.00	0.87	0.09	10.80	4.00	3,880.00	1,284.00
0+800.00	1.49	0.05	23.60	1.40	3,903.60	1,285.40
0+820.00	1.77	0.02	32.60	0.70	3,936.20	1,286.10
0+840.00	3.8	0	55.70	0.20	3,991.90	1,286.30

0+860.00	4.71	0	85.10	0.00	4,077.00	1,286.30
0+880.00	4.87	0	95.80	0.00	4,172.80	1,286.30
0+900.00	5.14	0	100.10	0.00	4,272.90	1,286.30
0+920.00	6.09	0	112.30	0.00	4,385.20	1,286.30
0+940.00	6.69	0	127.80	0.00	4,513.00	1,286.30
0+960.00	9.03	0	157.20	0.00	4,670.20	1,286.30
0+980.00	15.83	0	248.60	0.00	4,918.80	1,286.30
1+000.00	15.78	0	316.10	0.00	5,234.90	1,286.30
1+020.00	15.49	0	312.70	0.00	5,547.60	1,286.30
1+040.00	11.28	0	267.70	0.00	5,815.30	1,286.30
1+060.00	9.12	0	204.00	0.00	6,019.30	1,286.30
1+080.00	6.44	0	155.60	0.00	6,174.90	1,286.30
1+100.00	4.17	0	106.10	0.00	6,281.00	1,286.30
1+120.00	3.03	0	72.00	0.00	6,353.00	1,286.30
1+140.00	1.82	0.03	48.50	0.30	6,401.50	1,286.60
1+160.00	0.37	0.14	21.90	1.70	6,423.40	1,288.30
1+180.00	0	1.6	3.70	17.40	6,427.10	1,305.70
1+200.00	0	2.62	0.00	42.20	6,427.10	1,347.90
1+220.00	0	3.61	0.00	62.30	6,427.10	1,410.20
1+240.00	0	5.82	0.00	94.30	6,427.10	1,504.50
1+260.00	0	6.21	0.00	120.30	6,427.10	1,624.80
1+280.00	0	7.48	0.00	136.90	6,427.10	1,761.70
1+300.00	0	8.9	0.00	163.80	6,427.10	1,925.50
1+320.00	0	10.81	0.00	197.10	6,427.10	2,122.60
1+340.00	0	12.11	0.00	229.20	6,427.10	2,351.80
1+360.00	0	13.65	0.00	257.60	6,427.10	2,609.40
1+380.00	0	14.92	0.00	285.70	6,427.10	2,895.10
1+400.00	0	16.3	0.00	312.20	6,427.10	3,207.30
1+420.00	0	16.38	0.00	326.80	6,427.10	3,534.10
1+440.00	0	15.13	0.00	315.10	6,427.10	3,849.20
1+460.00	0	14.42	0.00	295.50	6,427.10	4,144.70
1+480.00	0	13.46	0.00	278.80	6,427.10	4,423.50
1+500.00	0	12.37	0.00	258.30	6,427.10	4,681.80
1+520.00	0	10.51	0.00	228.80	6,427.10	4,910.60
1+540.00	0	9.34	0.00	198.50	6,427.10	5,109.10
1+560.00	0	8.22	0.00	175.60	6,427.10	5,284.70
1+580.00	0	7.19	0.00	154.10	6,427.10	5,438.80
1+600.00	0	6.32	0.00	134.10	6,427.10	5,573.90
1+620.00	0	4.9	0.00	112.20	6,427.10	5,686.10
1+620.00	0	3.03	0.00	79.30	6,427.10	
					,	5,765.40
1+660.00	0	1.84	0.00	48.70	6,427.10	5,814.10
1+680.00	0 14	1.04	0.00	28.80	6,427.10	5,842.90
1+700.00	0.14	0.28	1.40	13.20	6,428.50	5,856.10

1+720.00	0.69	0.15	8.30	4.30	6,436.80	5,860.40
1+740.00	1.83	0.05	25.20	2.00	6,462.00	5,862.40
1+760.00	4.06	0	58.90	0.50	6,520.90	5,862.90
1+780.00	4.12	0.01	81.80	0.10	6,602.70	5,863.00
1+800.00	4.9	0	90.20	0.10	6,692.90	5,863.10
1+820.00	5.63	0	105.30	0.00	6,798.20	5,863.10
1+840.00	7.07	0	127.00	0.00	6,925.20	5,863.10
1+860.00	8.46	0	155.30	0.00	7,080.50	5,863.10
1+880.00	9.51	0	179.70	0.00	7,260.20	5,863.10
1+900.00	11.19	0	207.00	0.00	7,467.20	5,863.10
1+920.00	11.14	0	223.30	0.00	7,690.50	5,863.10
1+940.00	11.78	0	229.20	0.00	7,919.70	5,863.10
1+960.00	11.89	0	236.70	0.00	8,156.40	5,863.10
1+980.00	11.7	0	235.90	0.00	8,392.30	5,863.10
2+000.00	11.67	0	233.70	0.00	8,626.00	5,863.10
2+020.00	10.59	0	222.60	0.00	8,848.60	5,863.10
2+040.00	8.65	0	192.40	0.00	9,041.00	5,863.10
2+060.00	7.15	0	158.00	0.00	9,199.00	5,863.10
2+080.00	6.2	0	133.50	0.00	9,332.50	5,863.10
2+100.00	6.47	0	126.70	0.00	9,459.20	5,863.10
2+120.00	6.11	0	125.80	0.00	9,585.00	5,863.10
2+140.00	5.79	0	119.00	0.00	9,704.00	5,863.10
2+160.00	5.02	0	108.10	0.00	9,812.10	5,863.10
2+180.00	3.8	0	88.20	0.00	9,900.30	5,863.10
2+200.00	2.74	0.03	65.40	0.30	9,965.70	5,863.40
2+220.00	2.02	0.06	47.60	0.90	10,013.30	5,864.30
2+240.00	0.85	0.13	28.70	1.90	10,042.00	5,866.20
2+260.00	0.06	0.4	9.10	5.30	10,051.10	5,871.50
2+280.00	0	1.75	0.60	21.50	10,051.70	5,893.00
2+300.00	0	2.82	0.00	45.70	10,051.70	5,938.70
2+320.00	0	3.13	0.00	59.50	10,051.70	5,998.20
2+340.00	0	5.21	0.00	83.40	10,051.70	6,081.60
2+360.00	0	6.51	0.00	117.20	10,051.70	6,198.80
2+380.00	0	6.89	0.00	134.00	10,051.70	6,332.80
2+400.00	0	7.65	0.00	145.40	10,051.70	6,478.20
2+420.00	0	8.11	0.00	157.60	10,051.70	6,635.80
2+440.00	0	7.61	0.00	157.20	10,051.70	6,793.00
2+460.00	0	6.58	0.00	141.90	10,051.70	6,934.90
2+480.00	0	6.83	0.00	134.10	10,051.70	7,069.00
2+500.00	0	5.85	0.00	126.80	10,051.70	7,195.80
2+520.00	0.04	3.87	0.40	97.20	10,052.10	7,293.00
2+540.00	0.03	2.8	0.70	66.70	10,052.80	7,359.70

2+560.00	0.39	0.25	4.20	30.50	10,057.00	7,390.20
2+580.00	0.89	0.12	12.80	3.70	10,069.80	7,393.90
2+600.00	2.1	0.01	29.90	1.30	10,099.70	7,395.20
2+620.00	4.34	0	64.40	0.10	10,164.10	7,395.30
2+640.00	5.27	0	96.10	0.00	10,260.20	7,395.30
2+660.00	3.54	0.43	88.10	4.30	10,348.30	7,399.60
2+680.00	5.8	0	93.40	4.30	10,441.70	7,403.90
2+700.00	7.16	0	129.60	0.00	10,571.30	7,403.90
2+720.00	8.8	0	159.60	0.00	10,730.90	7,403.90
2+740.00	9.57	0	183.70	0.00	10,914.60	7,403.90
2+760.00	12.06	0	216.30	0.00	11,130.90	7,403.90
2+780.00	14.1	0	261.60	0.00	11,392.50	7,403.90
2+800.00	11.25	0	253.50	0.00	11,646.00	7,403.90
2+820.00	14.23	0	254.80	0.00	11,900.80	7,403.90
2+840.00	11.19	0	254.20	0.00	12,155.00	7,403.90
2+860.00	11.17	0	223.60	0.00	12,378.60	7,403.90
2+880.00	11.88	0	230.50	0.00	12,609.10	7,403.90
2+900.00	9.86	0	217.40	0.00	12,826.50	7,403.90
2+920.00	9.96	0	198.20	0.00	13,024.70	7,403.90
2+940.00	10.1	0	200.60	0.00	13,225.30	7,403.90
2+960.00	10.21	0	203.10	0.00	13,428.40	7,403.90
2+980.00	8.68	0	188.90	0.00	13,617.30	7,403.90
3+000.00	8.11	0	167.90	0.00	13,785.20	7,403.90
3+020.00	6.05	0	141.60	0.00	13,926.80	7,403.90
3+040.00	3.93	0.01	99.80	0.10	14,026.60	7,404.00
3+060.00	3.75	0	76.80	0.10	14,103.40	7,404.10
3+080.00	3.12	0.05	68.70	0.50	14,172.10	7,404.60
3+100.00	6.11	0	92.30	0.50	14,264.40	7,405.10
3+120.00	8.9	0	150.10	0.00	14,414.50	7,405.10
3+140.00	8.85	0	177.50	0.00	14,592.00	7,405.10
3+160.00	5.99	0.08	148.40	0.80	14,740.40	7,405.90
3+180.00	5.99	0	119.80	0.80	14,860.20	7,406.70
3186.845	5.85	0	40.52	0.00	14,900.72	7,406.70

Anexo 8: Reporte de curvas verticales

Client: Prepared by:

Client Preparer

Client Company Your Company Name

Address 1 123 Main Street

Date: 23/7/2025 19:12:05

Vertical Alignment: RASANTE

Description:

Station Range: Start: 0+000.00, End: 3+186.85

Vertical Curve Information:(sag curve)

PVC Station: 0+219.64 Elevation: 18.702m

PVI Station: 0+244.64 Elevation: 18.577m

PVT Station: 0+269.64 Elevation: 18.703m

Low Point: 0+244.54 Elevation: 18.640m

Grade in: -0.50% Grade out: 0.50%

Change: 1.00% K: 49.800m

Curve Length: 50.000m Curve Radius 4,979.984m

Headlight Distance:

Vertical Curve In		st curve) 	
PVC Station:	0+545.15	Elevation:	20.091m
PVI Station:	0+570.15	Elevation:	20.217m
PVT Station:	0+595.15	Elevation:	20.092m
High Point:	0+570.25	Elevation:	20.155m
Grade in:	0.50%	Grade out:	-0.50%
Change:	1.00%	K:	49.800m
Curve Length:	50.000m	Curve Radius	4,979.984m
Passing Distance	:: 1,565.172m	Stopping Distan	nce: 686.915m
Vertical Curve In	formation:(sag	curve)	
PVC Station:	0+985.82	Elevation:	18.139m
PVI Station:	1+010.82	Elevation:	18.014m
PVT Station:	1+035.82	Elevation:	18.179m
Low Point:	1+007.40	Elevation:	18.085m
Grade in:	-0.50%	Grade out:	0.66%
Change:	1.16%		43.156m

F	

Curve Length: 50.000m Curve Radius 4,315.58	.588m
---	-------

Headlight Distance:

Vertical Curve	Information:	(crest curve)
----------------	--------------	---------------

PVC Station: 1+419.48 Elevation: 20.705m

PVI Station: 1+444.48 Elevation: 20.870m

PVT Station: 1+469.48 Elevation: 20.745m

High Point: 1+447.90 Elevation: 20.799m

Grade in: 0.66% Grade out: -0.50%

Change: 1.16% K: 43.156m

Curve Length: 50.000m Curve Radius 4,315.588m

Passing Distance: 1,359.693m Stopping Distance: 598.606m

Vertical Curve Information:(sag curve)

PVC Station: 1+932.64 Elevation: 18.429m

PVI Station: 1+957.64 Elevation: 18.304m

PVT Station: 1+982.64 Elevation: 18.429m

Low Point: 1+957.64 Elevation: 18.367m

Grade in:	-0.50%	Grade out:	0.50%

Change: 1.00% K: 50.000m

Curve Length: 50.000m Curve Radius 5,000.000m

Headlight Distance:

Vertical Curve Information:(crest curve)

PVC Station: 2+401.85 Elevation: 20.525m

PVI Station: 2+426.85 Elevation: 20.650m

PVT Station: 2+451.85 Elevation: 20.525m

High Point: 2+426.85 Elevation: 20.588m

Grade in: 0.50% Grade out: -0.50%

Change: 1.00% K: 50.000m

Curve Length: 50.000m Curve Radius 5,000.000m

Passing Distance: 1,571.362m Stopping Distance: 689.575m

Vertical Curve Information:(sag curve)

PVC Station: 2+770.09 Elevation: 18.934m

PVI Station: 2+795.09 Elevation: 18.809m

PVT Station: 2+820.09 Elevation: 18.946m

Low Point: 2+793.95 Elevation: 18.874m

Grade in: -0.50% Grade out: 0.55%

Change: 1.05% K: 47.711m

Curve Length: 50.000m Curve Radius 4,771.122m

Headlight Distance:

Anexo 9: Alineamiento de curvas horizontales

Alignment Curve Report

Client: Client

Company

Project Name: C:\Users\User\Desktop\tesis julio 125 km\TESIS Project

F - copia.dwg **Description:**

Report Date: 23/7/2025 19:09:20 **Prepared by:**

Preparer

Alignment: EJE VIA

Description:

Tangent Data

Length: 571.844 Course: N 76° 40' 41.1953" E

Circular Curve Data

Delta: 26° 16' 18.3799" Type: LEFT

Radius: 125.000

Length: 57.316 Tangent: 29.171

Mid-Ord: 3.271 External: 3.359

Chord: 56.815 Course: N 63° 32' 32.0054" E

Tangent Data

Length: 239.925 Course: N 50° 24' 22.8155" E

Circular Curve Data

Delta: 01° 30' 45.7914" Type: LEFT

Radius: 950.000

Length: 25.082 Tangent: 12.542

Mid-Ord: 0.083 External: 0.083

Chord: 25.081 Course: N 49° 38' 59.9197" E

Tangent Data

Length: 437.806 Course: N 48° 53' 37.0240" E

Circular Curve Data

Delta: 14° 10' 25.3058" Type: RIGHT

Radius: 200.000

Length: 49.476 Tangent: 24.865

Mid-Ord: 1.528 External: 1.540

Chord: 49.349 Course: N 55° 58' 49.6769" E

Tangent Data

Length: 103.384 Course: N 63° 04' 02.3299" E

Circular Curve Data

Delta: 02° 29' 29.0176" Type: LEFT

Radius: 450.000

Length: 19.567 Tangent: 9.785

Mid-Ord: 0.106 External: 0.106

Chord: 19.566 Course: N 61° 49' 17.8211" E

Tangent Data

Length: 102.887 Course: N 60° 34' 33.3123" E

Circular Curve Data

Delta: 02° 44' 23.8854" Type: LEFT

Radius: 400.000

Length: 19.129 Tangent: 9.566

Mid-Ord: 0.114 External: 0.114

Chord: 19.127 Course: N 59° 12' 21.3695" E

Tangent Data

Length: 425.427 Course: N 57° 50' 09.4268" E

Circular Curve Data

Delta: 00° 29' 12.6578" Type: LEFT

Radius: 1200.000

Length: 10.197 Tangent: 5.098

Mid-Ord: 0.011 External: 0.011

Chord: 10.197 Course: N 57° 35' 33.0979" E

Tangent Data

Length: 429.769 Course: N 57° 20' 56.7690" E

Circular Curve Data

Delta: 27° 04' 18.5781" Type: LEFT

Radius: 125.000

Length: 59.062 Tangent: 30.093

Mid-Ord: 3.472 External: 3.571

Chord: 58.514 Course: N 43° 48' 47.4800" E

Tangent Data

Length: 493.365 Course: N 30° 16' 38.1909" E

Circular Curve Data

Delta: 43° 16' 45.7648" Type: RIGHT

Radius: 80.000

Length: 60.429 Tangent: 31.738

Mid-Ord: 5.638 External: 6.066

Chord: 59.003 Course: N 51° 55' 01.0733" E

Tangent Data

Length: 23.133 Course: N 73° 33' 23.9557" E

Circular Curve Data

Delta: 46° 14' 11.8440" Type: LEFT

Radius: 60.000

Length: 48.419 Tangent: 25.615

Mid-Ord: 4.818 External: 5.239

Chord: 47.116 Course: N 50° 26' 18.0337" E

Tangent Data

Length: 10.628 Course: N 27° 19' 12.1118" E

Anexo 10: Evidencia fotográfica

Ilustración 20. Equipo topográfico

Ilustración 21. Levantamiento topográfico

Ilustración 22. Conteo vehicular

Ilustración 23. Elaboración de calicatas

Ilustración 24. Calicata

Ilustración 25. Extracción de muestras de suelo

Ilustración 26. Preparación de muestras

Ilustración 27. Tamizado a través del tamiz $N^{\circ}4$

Ilustración 28. Ensayo de CBR

Ilustración 29. Incorporación de agua para CBR

Ilustración 30. Ensayo Proctor

Ilustración 31. Puesta de muestras en el horno

Ilustración 32. Tamizado por lavado

Ilustración 33. Uso de la tamizadora para granulometría

Ilustración 34. Ensayo de límites de consistencia

Ilustración 35. Muestras de límites de consistencia