
FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

EVALUACIÓN DEL PAVIMENTO DE LA AVENIDA CIRCUNVALACIÓN NORTE DESDE LA AVENIDA LA PRIMAVERA HASTA LA AVENIDA 10 DE AGOSTO, MACHALA

CASTILLO MONCADA ALEXANDER JOAO INGENIERO CIVIL

MACHALA 2024


FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

EVALUACIÓN DEL PAVIMENTO DE LA AVENIDA CIRCUNVALACIÓN NORTE DESDE LA AVENIDA LA PRIMAVERA HASTA LA AVENIDA 10 DE AGOSTO, MACHALA

CASTILLO MONCADA ALEXANDER JOAO INGENIERO CIVIL

MACHALA 2024

FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

PROYECTOS TÉCNICOS

EVALUACIÓN DEL PAVIMENTO DE LA AVENIDA CIRCUNVALACIÓN NORTE DESDE LA AVENIDA LA PRIMAVERA HASTA LA AVENIDA 10 DE AGOSTO, MACHALA

CASTILLO MONCADA ALEXANDER JOAO INGENIERO CIVIL

ROMERO VALDIVIEZO ELSI AMERICA

MACHALA 2024

Evaluación del pavimento de la avenida Circunvalación Norte desde la avenida La Primavera hasta la avenida 10 de Agosto, Machala

por Alexander Castillo

Fecha de entrega: 02-ago-2024 12:11p.m. (UTC-0500)

Identificador de la entrega: 2426346083

Nombre del archivo: TESIS PARA URKUN.pdf (1.39M)

Total de palabras: 15625 Total de caracteres: 77675

Evaluación del pavimento de la avenida Circunvalación Norte desde la avenida La Primavera hasta la avenida 10 de Agosto, Machala

Machala	
INFORME DE ORIGINALIDAD	
9% 12% 1% INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES	4% TRABAJOS DEL ESTUDIANTE
FUENTES PRIMARIAS	
1 vsip.info Fuente de Internet	1 %
dspace.uazuay.edu.ec Fuente de Internet	1 %
repository.unimilitar.edu.co Fuente de Internet	1 %
repositorio.unc.edu.pe Fuente de Internet	1 %
dspace.ups.edu.ec Fuente de Internet	1 %
repositorio.uancv.edu.pe Fuente de Internet	<1%
7 www.yilport.com Fuente de Internet	<1%
8 1library.co Fuente de Internet	<1%

9	repositorio.flacsoandes.edu.ec Fuente de Internet	<1%
10	dominiodelasciencias.com Fuente de Internet	<1%
11	dspace.unach.edu.ec Fuente de Internet	<1%
12	doaj.org Fuente de Internet	<1%
13	www.diariocorreo.com.ec Fuente de Internet	<1%
14	fdocuments.ec Fuente de Internet	<1%
15	revistas.ucr.ac.cr Fuente de Internet	<1%
16	boacansea.blogspot.com Fuente de Internet	<1%
17	cybertesis.uni.edu.pe Fuente de Internet	<1%
18	repositorio.uladech.edu.pe Fuente de Internet	<1%
19	repositorio.usanpedro.edu.pe Fuente de Internet	<1%
20	Submitted to Universidad Andina del Cusco Trabajo del estudiante	<1%

21	WWW.IESS.gob.ec Fuente de Internet	<1%
22	Submitted to Universidad Cesar Vallejo Trabajo del estudiante	<1%
23	repositorio.upn.edu.pe Fuente de Internet	<1%
24	repositorio.unesum.edu.ec Fuente de Internet	<1%

Excluir citas Activo Excluir coincidencias < 39 words

Excluir bibliografía Activo

CLÁUSULA DE CESIÓN DE DERECHO DE PUBLICACIÓN EN EL REPOSITORIO DIGITAL INSTITUCIONAL

El que suscribe, CASTILLO MONCADA ALEXANDER JOAO, en calidad de autor del siguiente trabajo escrito titulado EVALUACIÓN DEL PAVIMENTO DE LA AVENIDA CIRCUNVALACIÓN NORTE DESDE LA AVENIDA LA PRIMAVERA HASTA LA AVENIDA 10 DE AGOSTO, MACHALA, otorga a la Universidad Técnica de Machala, de forma gratuita y no exclusiva, los derechos de reproducción, distribución y comunicación pública de la obra, que constituye un trabajo de autoría propia, sobre la cual tiene potestad para otorgar los derechos contenidos en esta licencia.

El autor declara que el contenido que se publicará es de carácter académico y se enmarca en las dispociones definidas por la Universidad Técnica de Machala.

Se autoriza a transformar la obra, únicamente cuando sea necesario, y a realizar las adaptaciones pertinentes para permitir su preservación, distribución y publicación en el Repositorio Digital Institucional de la Universidad Técnica de Machala.

El autor como garante de la autoría de la obra y en relación a la misma, declara que la universidad se encuentra libre de todo tipo de responsabilidad sobre el contenido de la obra y que asume la responsabilidad frente a cualquier reclamo o demanda por parte de terceros de manera exclusiva.

Aceptando esta licencia, se cede a la Universidad Técnica de Machala el derecho exclusivo de archivar, reproducir, convertir, comunicar y/o distribuir la obra mundialmente en formato electrónico y digital a través de su Repositorio Digital Institucional, siempre y cuando no se lo haga para obtener beneficio económico.

CASTILLO MONCADA ALEXANDER JOAO

0705430932

DEDICATORIA

Dedico este trabajo de titulación a mis padres Juan Castillo y Moraima Moncada, por su amor incondicional y por enseñarme que la educación es la llave que abre las puertas del futuro, por su apoyo absoluto en toda esta etapa universitaria y sus sacrificios que han ayudado que yo llegue hasta este punto.

A mis amigos, por su compañía y aliento en los momentos difíciles, los cuales han sido parte de esta travesía universitaria. Finalmente, a mí mismo, por no rendirme a pesar de las adversidades y por creer en mis capacidades en este largo camino de determinación y perseverancia.

AGRADECIMIENTO

Quiero expresar mi más profundo agradecimiento a todas aquellas personas que han sido parte de este viaje académico y que, de una u otra forma, han contribuido al logro de esta meta.

Agradezco a mis padres por su amor incondicional, su apoyo constante y por ser mi fuente de inspiración en todo momento. Su fe en mí ha sido un faro que ha iluminado mi camino en los momentos más difíciles.

A mis amigos, pero especialmente a mi amigo Andy Eras que me ha acompañado a lo largo de esta etapa universitaria; y demás familiares, por sus palabras de aliento, por comprender mis ausencias en momentos importantes, recordándome que debo cumplir mis sueños y salir adelante a pesar de cualquier evento.

Finalmente, quiero agradecer a todas las personas y a la institución que, de alguna manera, ha facilitado el acceso a recursos, datos y el apoyo de los docentes para la realización de este proyecto técnico.

RESUMEN

El presente trabajo de investigación surge de un inadecuado servicio de vialidad en el tramo de vía analizado. Debido al deterioro del pavimento, se instauro como objetivo evaluar la estructura superficial del pavimento mediante el método PCI para conocer el nivel de deterioro y su extensión de daño en la Avenida Circunvalación Norte desde la Avenida La Primavera hasta la Avenida 10 de Agosto. La técnica utilizada para la evaluación externa del pavimento fue la recolección de datos, observación y el registro de fallas por medio de la metodología PCI (Índice de Condición del Pavimento), además de una nivelación para conocer el nivel actual del asfalto en la vía. Los resultados señalan que la condición del tramo de carretera analizada dio una calificación de 40.46, que lo ubica en la clasificación Regular según el índice PCI. A través de este método se determinó que existen 8 tipo de fallas de las 19 unidades analizadas, de las cuales podemos identificar según su grado de influencia a las siguientes: Parcheo con un 84.06%, Piel de cocodrilo con un 5.29%, Abultamiento y Hundimiento con un 5.09% y Huecos con un 2.23%. Por estos argumentos podemos concluir, que la intervención de mantenimiento más adecuado es el fresado por la presencia de muchas fallas, aun representando un alto gasto. No obstante, se recomendó realizar los respectivos estudios de suelo para verificar si el paquete estructural cumple con las solicitaciones de tráfico.

Palabras claves: Pavimento flexible, evaluación superficial, fallas, PCI.

ABSTRACT

The present research work arises from an inadequate road service on the section of road analyzed. Due to the deterioration of the pavement, the objective was established to evaluate the surface structure of the pavement using the PCI method to determine the level of deterioration and the extent of damage on the Avenida Circunvalación Norte from Avenida La Primavera to Avenida 10 de Agosto. The technique used for the external evaluation of the pavement was data collection, observation, and the recording of failures through the PCI methodology (Pavement Condition Index), as well as leveling to determine the current level of asphalt on the road. The results indicate that the condition of the analyzed road section received a rating of 40.46, which places it in the Regular classification according to the PCI index. Through this method, it was determined that there are 8 types of failures out of the 19 units analyzed, among which we can identify the following according to their degree of influence: Patching with 84.06%, Alligator Cracking with 5.29%, Bulging and Settling with 5.09%, and Potholes with 2.23%. Based on these findings, we can conclude that the most appropriate maintenance intervention is milling due to the presence of many failures, despite representing a high cost. However, it was recommended to carry out the respective soil studies to verify if the structural package meets traffic demands.

Keywords: flexible pavement, superficial evaluation, failures, PCI.

ÍNDICE

INTRODUCCIÓN		12
CAPÍTULO I: PLANTEAMIENTO DEI	PROBLEMA	15
1.1 Línea base del proyecto		15
1.1.1 Caracterización territorial de Mad	chala	15
1.1.2 Población		16
1.1.3 Educación		17
1.1.4 Sector Productivo de Machala		17
1.1.5 Infraestructura y acceso a servicio	os	19
1.1.5.1 Agua potable		19
1.1.5.2 Alcantarillado		19
1.1.5.3 Electricidad		19
1.1.5.4 Servicio de salud		19
1.1.5.5 Situación de la vivienda: ofer	rta, demanda y calidad	20
1.1.6 Geomorfología de Machala		20
1.1.7 Información Climática		21
1.1.8 Situación vial		22
1.1.9 Uso de Suelo		22
1.1.10 Amenazas en sistemas hídricos.		23
1.2 Descripción de la Situación Proble	mática (Causas y Efectos)	23
1.3 Formulación del problema		24
1.4 Delimitación del objeto de estudio.		25
1.5 Justificación		26
1.6 Objetivos: General y Específicos		27
1.6.1 Objetivo General		27

1.6.2 Objetivos Específicos	27
CAPITULO II: MARCO TEORICO	28
2.1 Antecedentes Contextuales	28
2.1.1 Macro	28
2.1.2 Meso	29
2.1.3 Micro	30
2.2 Antecedentes Conceptuales	31
2.2.1 Carreteras	31
2.2.2 Vías urbanas	31
2.2.3 Suelo	31
2.2.4 Asfalto	31
2.2.5 Base	32
2.2.6 Subbase	32
2.2.7 Pavimento	32
2.2.8 Pavimento flexible	32
2.2.9 Evaluación del pavimento	32
2.2.10 Deterioro del pavimento flexible	32
2.2.11 Factor Camión	33
2.2.12 Deformaciones de la carretera	33
2.2.13 Índice de Condición del Pavimento	33
2.2.14 Mantenimiento preventivo	34
2.2.15 Tipo de fallas	34
2.2.16 Severidad	35
2.2.17 Clasificación de PCI	35
2.3 Antecedentes Referenciales	35

CAPÍTULO III: METODOLOGÍA	37
3.1 Modalidad básica de la investigación	37
3.2 Tipo de investigación	37
3.3 Descripción de la Población y Muestra	37
3.3.1 Población Referencial	37
3.3.2 Tamaño de muestra	37
3.4 Métodos Empíricos con los Materiales Utilizados	38
3.4.1 Método Empírico	38
3.4.2 Materiales e Instrumentos	38
3.5 Técnicas para el Procedimiento de los Datos Obtenidos	38
3.5.1 Inspección Visual	38
3.5.2 Unidades de Muestreo	39
3.5.3 Determinación de las Unidades de Muestreo	39
3.5.4 Intervalo de unidades de muestreo	40
3.5.5 Información de fallas	40
3.5.6 Valores deducidos	41
3.5.7 Número Máximo Admisible de Valores Deducidos	47
3.5.8 Valor deducido corregido y clasificación PCI	47
3.5.9 Nivelación topográfica	48
CAPÍTULO IV: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	50
4.1 Determinación del índice del estado del pavimento	50
4.1.1 Calculo de la muestra y unidad de muestra	50
4.1.2 Calculo de unidades a ser evaluadas	51
4.1.3 Selección de la unidad de muestreo	52
4 1 4 Resultados de la unidad de muestreo del tramo 1	52

4.1.4.1 Registro de fallas del tramo 1	53
4.1.4.2 Calculo de los valores deducidos para el tramo 1	53
4.1.4.3 Calculo de los valores corregidos y el PCI del tramo 1	59
4.2 Análisis de resultados e interpretación de datos	61
4.2.1 Determinación del PCI promedio	61
4.2.2 Fallas Existentes en la avenida Circunvalación Norte	62
4.3 Intervención y Mantenimiento	65
4.3.1 Secuela de la Nivelación	69
4.3.2 Erradicación de la carpeta asfáltica y aplicación de fresado	69
CONCLUSIONES	70
RECOMENDACIONES	72
REFERENCIAS BIBLIOGRÁFICAS	73
ANEXOS	79

Índice de Ilustraciones

Ilustración 1: Territorio de Machala	15
Ilustración 2: Sectores Productivos de Machala	18
Ilustración 3: Situación actual de la Av. Circunvalación Norte entre la Av. La primaver	a y
la Av. 10 de Agosto	24
Ilustración 4: Árbol de problemas	24
Ilustración 5: Localización del Proyecto	25
Ilustración 6: Curva de Valor Deducido de Piel de Cocodrilo	42
Ilustración 7: Curva de Valor Deducido de la Exudación	42
Ilustración 8: Curva de Valor Deducido para el Abultamiento y Hundimiento	43
Ilustración 9: Curva de Valor Deducido para Grieta de Borde	43
Ilustración 10: Curva de Valor Deducido para el Desnivel	44
Ilustración 11: Curva de Valor Deducido Para las Grietas Longitudinales y Transversal	es 44
Ilustración 12: Curva de Valor Deducido para el Parcheo	45
Ilustración 13: Curva de Valor Deducido para el Hueco	45
Ilustración 14: Curva de Valor Deducido para el Desprendimiento de Agregados	46
Ilustración 15: Curva de Valores Deducidos Corregidos	48
Ilustración 16: Representación gráfica de las unidades a evaluar	52
Ilustración 17: Determinación del valor deducido para desprendimiento de agregados	54
Ilustración 18: Determinación del valor deducido para parcheo	55
Ilustración 19: Determinación del valor deducido de la piel de cocodrilo	56
Ilustración 20: Determinación del valor deducido de grieta de borde	57
Ilustración 21: Determinación del valor deducido para Abultamiento y Hundimiento	58
Ilustración 22: Valores deducidos corregidos del tramo 1	60
Ilustración 23: Resumen de PCI en las 14 unidades de muestra	62
Ilustración 24: Fallas registradas en las unidades de muestra	63

Índice de Tablas

Tabla 1: Superficies ocupadas de Cantón Machala, según tipo de componente geográfic	o 16
Tabla 2: Población del cantón Machala	17
Tabla 3: Nivel de educación y tasa de asistencia	17
Tabla 4: Tipo de viviendas	20
Tabla 5: Geomorfología de Machala	21
Tabla 6: Principales parámetros climáticos del Cantón Machala	21
Tabla 7: Uso de suelo del cantón Machala.	22
Tabla 8: Clasificación de los tipos de fallas en pavimentos flexibles	34
Tabla 9: Clasificación del PCI	35
Tabla 10: Longitudes de muestreo asfaltico	38
Tabla 11: Niveles de severidad	40
Tabla 12: Hoja de Excel para el registro de fallas del pavimento flexible	41
Tabla 13: Hoja de Excel para registro de valores deducidos	46
Tabla 14: Hoja de Excel de numero admisible de valores deducidos	47
Tabla 15: Calculo del valor deducido corregido	47
Tabla 16: Designación del tipo de fallas existentes en el tramo 1	52
Tabla 17: Registro de fallas con sus respectivas cantidades totales en el tramo 1	53
Tabla 18: Registro de los valores deducidos en el tramo 1	58
Tabla 19: Registro del número máximo de valores deducidos y el HDV	59
Tabla 20:Calculo de valores corregidos y VDC máximo	60
Tabla 21: Resumen de PCI de las 14 unidades de muestra	61
Tabla 22: Fallas registradas en las unidades de muestreo	63
Tabla 23: Descripción y causas de los tipos de fallas en la vía	64
Tabla 24: Nivel de servicio e intervención de propuesta	66
Tabla 25: Opciones de reparaciones para fallas representativas	67
Tabla 26: Técnicas de mantenimiento para las fallas en el pavimento	68
Tabla 27: Resultados de la nivelación entre bordillo y asfalto	69

INTRODUCCIÓN

Importancia del Tema

En el contexto de un mundo cada vez más interconectado, donde el intercambio de bienes y servicios es creciente, el papel de las carreteras ha experimentado un notorio aumento. Estas vías no solo se limitan a ser simples caminos, sino que se han transformado en auténticos impulsores de la competitividad económica y del desarrollo social. Por esa razón, es indispensable contar con infraestructuras de carreteras que aseguren una circulación segura, cómoda y fluida. En este contexto, el pavimento emerge como el elemento central de estas obras, y su mantenimiento en óptimas condiciones es esencial para asegurar un funcionamiento eficiente (González Fernández et al., 2019).

Las carreteras se construyen como infraestructuras destinadas a facilitar la movilidad y accesibilidad de actividades socioeconómicas en la sociedad. La existencia de una red vial es muy necesaria para sustentar la tasa de crecimiento de la economía, la agricultura y otros sectores (Sabaruddin & Deni, 2020). Por ende, es esencial llevar a cabo actividades de mantenimiento en el ciclo de vida del pavimento, con el objetivo de realizar intervenciones efectivas que contribuyan a prolongar su durabilidad. Esto no solo asegura la movilidad del usuario, sino que también previene colisiones (Abril Zuleta et al., 2022).

En cualquier situación, es esencial definir acciones para la rehabilitación de las carreteras, tomando actos oportunos en respuesta a la evaluación funcional que revela las deficiencias de la superficie y el estado de las vías. Por otro lado, la evaluación estructural nos indica la capacidad resistente de la carretera (De La Cruz Vega et al., 2022). En este sentido, la correcta aplicación del método del PCI nos ayuda a una evaluación de las fallas que nos proporciona una indicación de la actualidad del pavimento, y toma forma numérica, donde 100 representa el estado óptimo y 0 la condición más deficiente (Torres Torres & Muñoz Pérez, 2023).

Actualidad de la problemática

El crecimiento de la red vial de la provincia de El Oro impulsa la mejora los sectores productivos, económicos y sociales entre cantones y parroquias, generando una movilidad

eficiente que se convierte en un instrumento fundamental para el crecimiento de la provincia. La cuidad de Machala, en particular, cuenta con una red vial de 210.94 km. La Provincia está conformado por la red vial estatal que tiene 389.76 km, conformada por corredores arteriales y vías colectoras (Plan de Desarrollo Vial Integral de La Provincia de El Oro, 2019).

Al explorar las infraestructuras viales se detectan fallos en el estado de las carreteras que dificultan la movilidad terrestre en áreas de difícil acceso. Estas deficiencias están asociadas a un mantenimiento insuficiente de la red vial, lo cual compromete la conservación del pavimento (Flores De Valgas Giler & Mogrovejo Carrasco, 2023). En las diferentes carreteras, es común descubrir sobredimensionamiento en la carpeta asfáltica, diseños con espesores inadecuados debido a la carencia de estudios lo que genera que no soporte la capacidad de carga y ocasiona un significativo desperdicio de recursos (Zapata Rogel et al., 2023).

En la actualidad, la evaluación del pavimento depende de observar y examinar su estado, las peculiaridades registradas en esta superficie y su condición estructural. El punto de vista del método de Índice de estado del pavimento (PCI) es la forma más completa para la evaluación y calificación del pavimento. Este método ayuda a comprender el estado general que considera la gravedad y extensión del daño, las cuales guían las acciones hacia un mantenimiento más eficaz y adecuado (Pinatt et al., 2020).

Estructura del trabajo

En el presente trabajo de titulación, se plantean cuatro capítulos que son:

En el capítulo I, denominado planteamiento del problema, se enfoca en la línea base del proyecto, la descripción de la situación problemática, la formulación del problema, la justificación y los objetivos generales y específicos que direccionan esta investigación.

En el capítulo II, designado como marco teórico, se reúne información bibliográfica de los artículos de investigación desarrollados previamente relacionados con el tema de estudio. Con esta base se redacta los antecedentes contextuales, referenciales y conceptuales con definiciones relacionados al tema que te permite conocer la metodología de la evaluación del pavimento y resultados de artículos obtenidos a nivel mundial, regional y local.

En el capítulo III, denominado metodología, se expone de forma detallada el procedimiento. Contiene la modalidad básica de la investigación, se describe el tipo de investigación, el objetivo de estudio, la población y muestra. Al final, se detalla los métodos teóricos y materiales utilizados para alcanzar el objetivo del estudio.

En el capítulo IV, se realiza un análisis e interpretación de los resultados obtenidos mediante la propuesta metodológica abarcada en el capítulo anterior. En este ámbito, se llevó a cabo la evaluación de la Av. Circunvalación Norte entre la Av. La Primavera hasta la Av. 10 de Agosto, utilizando el método PCI, de acuerdo a sus indicadores y sus clasificaciones que sirve para reconocer las fallas de la carretera y el desarrollo de propuestas para el mantenimiento o rehabilitación del pavimento en base a los resultados.

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1 Línea base del proyecto

1.1.1 Caracterización territorial de Machala

En la costa del Ecuador, en el suroeste del país, Machala es la cabecera cantonal de la provincia de El Oro, sirviendo, por tanto, como su centro administrativo, económico, financiero y comercial. Cuenta con una extensión aproximada de 37.292,38 hectáreas, distribuidas en 7 parroquias urbanas: Puerto Bolívar, Jambelí, Machala, Jubones, La Providencia, El Cambio y 9 de Mayo, y una parroquia rural: El Retiro (Plan de Desarrollo y Ordenamiento Territorial, 2019).

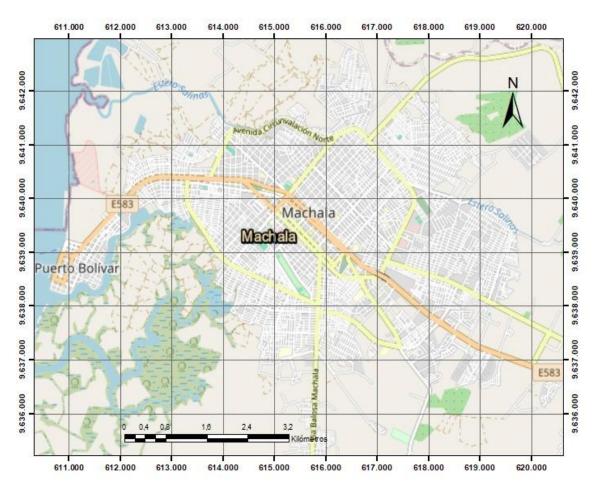


Ilustración 1: Territorio de Machala

Fuente: Autor

Sus orígenes se remontan al siglo XVIII, pero debido a su ubicación geográfica como el segundo puerto marítimo más importante del Ecuador, es recién a mediados del siglo XX, mostrando un acelerado crecimiento demográfico hasta establecer una población urbana, que eventualmente sería uno de los principales núcleos urbanos del país. Es uno de los más importantes centros administrativos, económicos, financieros y comerciales del Ecuador (Plan de Desarrollo y Ordenamiento Territorial, 2019).

En la siguiente tabla se muestra el espacio que ocupa cada zona en hectáreas y porcentualmente lo que corresponde dicha zona.

Tabla 1: Superficies ocupadas de Cantón Machala, según tipo de componente geográfico

Componentes geográficos	Área (ha)	Proporción
Área de manglares	599,32	1,61%
Área de Granjas Acuáticas	7745,43	20,78%
Área de Zona Productivas	12254,84	32,87%
Área de Zonas Bosque Nativo	2904,09	7,79%
Área Urbana, Limite 2012	5933,81	15,92%
Total Área Cantonal	37279,85	100,00%

Fuente: DIPLAN/PUGS – GADMM 2020

En la **Tabla 1**, se presenta el estado de uso del territorio del Cantón Machala, sobre el cual se ha marcado una particularidad con el 15,92 % del suelo que se presenta como Zona Urbana, el resto se delimitan por líneas de amortiguamiento entre lo urbano – productivo; y, entre lo productivo – natural, este dato es estratégico, ya que denota una importancia sobre los factores productivos fuera del área urbana.

1.1.2 Población

La población del Cantón Machala, de acuerdo al Censo de Población y Vivienda 2010, existían 256.022 habitantes, sin embargo, en una proyección de la población se estima que en el 2020 la población de la Ciudad de Machala sería aproximadamente de 289.141 personas, de las cuales el 49,08 % son hombres y el 50,92 % son mujeres (INEC, 2010).

El Área Urbana del Cantón (la Ciudad de Machala) tiene una población aproximada de 277.575 personas, que representa el 96 % del Cantón y el Área Rural (Zonas Rurales: Parroquia MACHALA y de la Parroquia El Retiro), el 4% (Plan de Desarrollo y Ordenamiento Territorial, 2019).

Tabla 2: Población total del cantón Machala

Sexo	Área Urbana	Área rural	Total
Hombre	136234	5676	141910
Mujer	141341	5889	150196
Total	277575	11566	289141

Fuente: SNI – INEC 2010 / Proyecciones 2020

1.1.3 Educación

No se puede considerar la educación como solo un servicio, sino como un derecho propio de la ciudadanía. En el cantón, la población escolar era de 217.696 estudiantes, de los cuales la mayoría, tanto a nivel urbano como rural, se registran en educación básica y primaria (INEC, 2010).

Tabla 3: Nivel de educación y tasa de asistencia

Nivel de	Tasa de asistencia (%)		
educación	Total	Urbana	Rural
Básica	93,79	93,9	92,12
Primaria	94,31	94,4	92,9
Secundaria	71,31	72,12	61,36
Bachillerato	58,38	59,77	42,63
Superior	23,62	24,44	11,69

Fuente: SNI – INEC 2010

1.1.4 Sector Productivo de Machala

Sector primario: El sector primario está formado por las actividades económicas relacionadas con la recolección o extracción y transformación de los recursos naturales con

poca o ninguna manipulación. Las principales actividades del sector primario son la agricultura, la ganadería, la silvicultura, la apicultura, la acuicultura, la caza y la pesca. (Plan de Desarrollo y Ordenamiento Territorial, 2019).

Sector secundario: El sector secundario transforma la materia prima que es extraída o producida por el sector primario, en productos de consumo o en bienes de equipo. Es decir, mientras que el sector primario se limita adquirir de manera directa los "recursos de la naturaleza", el sector secundario ejecuta procedimientos industriales para transformar dichos recursos. (Plan de Desarrollo y Ordenamiento Territorial, 2019).

Sector terciario: Es el sector económico que engloba las actividades relacionadas con los servicios no productores o transformadores de bienes materiales. Se generan servicios para satisfacer las necesidades de cualquier población en el mundo. (Plan de Desarrollo y Ordenamiento Territorial, 2019).

Sector no especificado: Es el sector que no está especificado, entre los cuales tenemos el trabajador nuevo y el no declarado. (Plan de Desarrollo y Ordenamiento Territorial, 2019).

Ilustración 2: Sectores Productivos de Machala

Fuente: Autor

En resumen, El (Plan de Desarrollo y Ordenamiento Territorial, 2019), en la zona de Machala predominan los sectores ya mencionados. De la población por tres sectores productivos y un sector no especificado, económicamente activa el sector secundario representa el 14.98%, seguido del sector primario con el 13.71% y el sector no especificado con el 10.83%. Según la (INEC, 2010), el sector terciario representa el 60.48% del total de la actividad productiva en Machala.

1.1.5 Infraestructura y acceso a servicios

1.1.5.1 Agua potable

Conforme a la (INEC, 2010), el estado de situación del agua para consumo humano presenta las siguientes características. El servicio de agua para consumo humano a través de la red pública presentaba una cobertura del 81%, el 10% de abastecimiento a través de pozos; el 8% de la población se abastecía del recurso agua por ríos, vertientes acequias y en otras formas el 1%. En la parroquia rural de El Retiro el 20% de la población se abastecía de agua por medio de la red pública.

1.1.5.2 Alcantarillado

Con arreglo a la (INEC, 2010), la parroquia Machala presentó una red de alcantarillado con una cobertura de conexión a la red pública del 75 %, seguido del tipo pozo séptico con el 13% y el 3% sin conexión alguna. En la parroquia El Retiro se evidencia que el 23% tienen conexión a la red pública, el 35 % es pozo séptico y no presentaron ninguna conexión el 11%.

1.1.5.3 Electricidad

En Machala, de acuerdo a la (INEC, 2010), el 97,94 % de las viviendas reciben energía a través de la Empresa Eléctrica.

1.1.5.4 Servicio de salud

Según los datos dados por la (INEC, 2010), existen 51 instituciones de salud privadas y 21 instituciones de salud públicas en la cuidad de Machala. De las cuales el 99% están en la zona urbana y el restante en zonas rurales.

1.1.5.5 Situación de la vivienda: oferta, demanda y calidad

Conforme con la (INEC, 2010), los porcentajes evidencian un acrecentamiento en los asentamientos humanos, lo cual es una tendencia positiva conforme a lo establecido en el cantón Machala.

Tabla 4: Vivienda tipo

Tipo de Vivienda	Casos	%
Casa / Villa	54867	72.69%
Departamento en casa o edificio	7541	9.99%
Cuarto en casa de inquilinato	5975	7.92%
Mediagua	2530	3.35%
Rancho	3096	4.10%
Covacha	824	1.09%
Choza	108	0.14%
Otra vivienda particular	460	0.61%
Hotel, pensión, residencial u hostal	20	0.03%
Cuartel Militar o de Policía / Bomberos	4	0.01%
Centro de Rehabilitación social / Cárcel	3	0.00%
Centro de acogida y protección para niños y	2	0.00%
niñas, mujeres e indígenas.		
Hospital, clínica, etc.	11	0.01%
Otra vivienda colectiva	24	0.03%
Sin vivienda	6	0.01%
Total	75479	100.00%

Fuente: INEC / SNI 2010

1.1.6 Geomorfología de Machala

A la vista del (Plan de Desarrollo y Ordenamiento Territorial, 2019), las formas de terreno y el porcentaje que se atienden en atribución a la extensión total del cantón se presentaran en la siguiente tabla.

Tabla 5: Geomorfología de Machala

Geomorfología	Área (HA)	%	
Llanuras aluviales de deposito	30875.31	82.83%	
Nivel aluvial alto	442.09	1.19%	
Terraza baja	60.14	0.16%	
Terraza indiferenciada	424.36	1.14%	
Zonas urbanas	3694.59	9.91%	
Cuerpos de agua	1778.74	4.77%	
Total	37275.23	100.00%	

Fuente: IGM / SMI 2010

1.1.7 Información Climática

Se observa el estado general de la atmosfera en la cuidad, proporcionando datos sobre temperatura, promedio anual, precipitación total anual y tipo de clima. Así mismo, tenemos aclaraciones sobre el periodo seco, que se refiere a un periodo durante el cual no existen precipitaciones suficientes para permitir que el suelo alcance su capacidad de saturación (Plan de Desarrollo y Ordenamiento Territorial, 2019).

Tabla 6: Principales parámetros climáticos del Cantón Machala

Parámetros climáticos				
Precipitación media mensual	102 mm			
Precipitación media multianual	621,8 mm			
Evaporación promedio mensual	94 mm			
Humedad relativa	75%			
Nubosidad	6-ago			
Temperatura ambiental media mensual	24,0 °C			
Temperatura ambiental mínima mensual	23,20 °C			

Fuente: Programa de reducción de desastres para el desarrollo sostenible en las ciudades de Piura y Machala, 2009.

1.1.8 Situación vial

La red vial cantonal principal (1er orden: más de 2 carriles), interrelaciona a los cantones Pasaje se encuentra a 20 km de Machala, Santa Rosa a 31 km y El Guabo siendo más cercano con una distancia de 18 km, con carreteras pavimentadas y distancias relativamente cortas para la conectividad intercantonal, tomando en cuenta que esta red es principalmente estatal (Plan de Desarrollo y Ordenamiento Territorial, 2019).

1.1.9 Uso de Suelo

En el siguiente esquema se muestra la cobertura y uso de suelo en zonas agrícolas como en zonas naturales. Además, se incluye la cubierta vegetal creada por el hombre, como las áreas metropolitanas.

Tabla 7: Uso de suelo del cantón Machala.

COBERTURA	2000		2008		2011	
Y USO DEL	ÁREA		ÁREA		ÁREA	
SUELO	(HA)	%	(HA)	%	(HA)	%
Arbórea/arbustiva	3488.03	9.36%	3252.9	8.73%	4011.44	10.80%
Camaroneras	7914.59	21.23%	9160.17	24.57%	8236.66	22.10%
Cuerpos de agua	1778.74	4.77%	1778.74	4.77%	1778.74	4.77%
Otras tierras	542.05	1.45%	459.09	1.23%	0	0.00%
Tierras						
agropecuarias	18755.50	50.32%	19890.86	53.4%	19452.81	52.20%
Vegetación						
arbustiva y						
herbácea	2943.23	7.90%	89.93	0.24%	0	0.00%
Áreas urbanas	1853.09	4.97%	2643.54	7.09%	3795.58	10.20%
TOTAL	37275.23	100.00%	37275.23	100.00%	37275.23	100.00%

Fuente: IGM / SNI 2010

1.1.10 Amenazas en sistemas hídricos

Según el autor, (Pérez Cruz, 2022), plantea que la cuidad de Machala posee pendientes desde bajas a nulas y eso genera malestares frente a precipitaciones extraordinarias en temporadas de invierno.

1.2 Descripción de la Situación Problemática (Causas y Efectos)

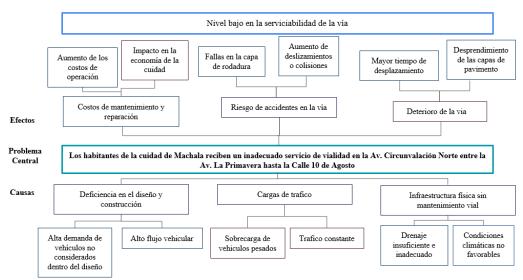
Las carreteras han tomado un papel importante en el desarrollo de la economía, educación y servicios básicos por lo que, es esencial que la infraestructura de la vía sea la correcta para contar con una circulación adecuada y fluida. Sin embargo, varías vías de la ciudad de Machala se encuentran en mal estado debido al deterioro del pavimento por diversos factores lo que ha ocasionado un mayor tiempo en el desplazamiento.

Una de las principales razones por las cuales no se experimenta un servicio vial adecuado radica en el diseño y la construcción deficientes, lo que resulta en costos elevados tanto en mantenimiento como en reparaciones. Este problema repercute directamente en las operaciones de tráfico.

Se ha analizado otra causa importante relacionada con las cargas de tráfico por sobrecarga de vehículos pesados, teniendo a la carpeta asfáltica siendo responsable de impermeabilizar la estructura y servir como superficie de rodamiento, siendo resistente a los esfuerzos por cargas de tráfico (Cedeño Vélez et al., 2023). Según el autor (Flores De Valgas Giler & Mogrovejo Carrasco, 2023) Ecuador no es la excepción en esta problemática, considerando que muchas vías demandan diseños para alto tráfico para vehículos de carga pesada y no cumplen con esas necesidades viales en el diseño de pavimento flexible.

La avenida Circunvalación Norte es una de las vías de comunicación más importantes para el ingreso y salida de vehículos de la cuidad, por ende, existe un alto flujo vehicular. La estructura superficial del pavimento no ha tenido un mantenimiento vial adecuado por lo que ha ocasionado un gran malestar a la ciudadanía por el deterioro de la vía, desprendimiento en las capas del pavimento, bacheos que no duran lo requerido por la norma, drenajes insuficientes e inadecuados, ocasionando como resultado bajos niveles de serviciabilidad.

Ilustración 3: Situación actual de la Av. Circunvalación Norte entre la Av. La Primavera y la Av. 10 de Agosto



Fuente: Autor

1.3 Formulación del problema

Los habitantes de la cuidad de Machala reciben un inadecuado servicio de vialidad en la Av. Circunvalación Norte entre la Av. La Primavera hasta la Av. 10 de Agosto. En la ilustración 4, se muestra el árbol de problemas con las causas y efectos del inadecuado servicio de vialidad, con sus respectivos componentes:

Ilustración 4: Árbol de problemas

Fuente: Autor

- ¿Los habitantes de la cuidad de Machala reciben un inadecuado servicio de vialidad en la Av. Circunvalación Norte entre la Av. la Primavera hasta la Calle 10 de Agosto?
- ¿Cuál es el método utilizado para evaluar la condición del pavimento flexible en la Av. Circunvalación Norte en la ciudad de Machala?
- ¿Cuáles son las condiciones actuales del pavimento asfaltico en la Av. Circunvalación Norte entre la Av. la Primavera hasta la Av. 10 de Agosto?

1.4 Delimitación del objeto de estudio

La ubicación del objeto de estudio se encuentra en el noroeste de la cuidad de Machala, específicamente en la Avenida Circunvalación Norte en un tramo de carretera comprendida entre la Avenida La Primavera hasta la Avenida 10 de Agosto. Haciendo uso del software ArcGis se calculó la distancia del tramo de carretera del proyecto obteniendo una longitud de 1011.33 metros aproximadamente y un área de 1.31 Ha.

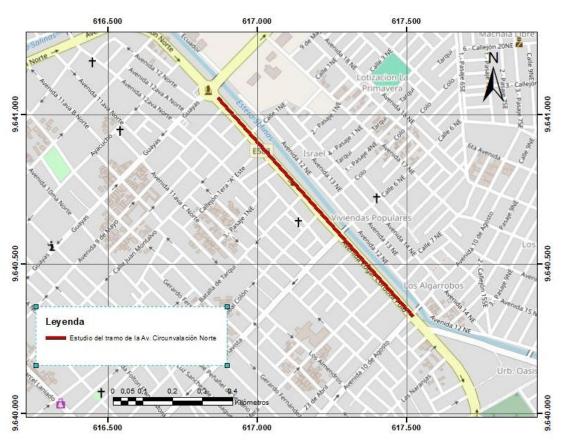


Ilustración 5: Localización del Proyecto

Fuente: Autor

1.5 Justificación

En los últimos años alrededor del mundo se han llevado a cabo variados estudios sobre la evaluación del pavimento, con la finalidad de mejorar la seguridad del usuario al conducir, reducir los daños en las vías y alternativas de mantenimiento vial para mejorar la calidad del servicio que ofrecen a los usuarios.

En la cuidad de Machala la evaluación superficial del pavimento en las carreteras es de suma importancia. La mayoría de las vías urbanas están revestidas con pavimento flexible. Según el PDOT, la avenida Circunvalación Norte es uno de principales corredores arteriales, caracterizado por un alto flujo de tráfico. Esta vía no solo funciona como conector con las entradas y salidas de Machala, sino que también sirve como punto de conexión hacia la vía que conduce a Puerto Bolívar. Es por eso que los vehículos pesados circulan por esta carretera conectando el Norte con el Oeste de la cuidad. Esta intensa actividad vehicular provoca un desgaste del pavimento, generando fallas en la capa de rodadura y ocasionando daños más acelerados en comparación con otras avenidas de la cuidad. Estas condiciones adversas no solo afectan la durabilidad de la infraestructura vial, sino que también resultan inadecuadas para la conducción, contribuyendo a un aumento considerable en el tiempo de desplazamiento.

La labor principal del mantenimiento vial es garantizar el buen estado de las vías, con el fin de dar comodidad al habitante en su movilidad. Estas operaciones desempeñan un papel crucial en el cuidado de la carpeta asfáltica. Un buen diseño proporciona una conexión adecuada entre los diferentes sectores de la cuidad, mientras que el arreglo en vías permite mantener en buenas condiciones el flujo de tráfico. Por lo que, al proponer alternativas de mantenimiento vial se ayuda a conservar la carretera en óptimas condiciones.

El presente proyecto consiste en la evaluación del estado del pavimento mediante el método del PCI, en la que se desarrollará una inspección visual contemplando sus fallas y severidad, lo que permitirá reconocer el estado actual de pavimento del tramo de vía comprendido entre la Avenida la Primavera hasta la Avenida 10 de Agosto. Esta información podrá ser utilizada para llevar un control del estado del segmento de la vía y proponer un mantenimiento preventivo con la finalidad de ofrecer calidad, confort y seguridad a los conductores.

1.6 Objetivos: General y Específicos

1.6.1 Objetivo General

Evaluar la estructura superficial del pavimento mediante el método PCI para conocer el nivel de deterioro y su extensión de daño en la Avenida Circunvalación Norte desde la Avenida la Primavera hasta la Avenida 10 de Agosto.

1.6.2 Objetivos Específicos

• Identificar los métodos utilizados en la evaluación de la estructura superficial del

pavimento mediante una revisión bibliográfica para la determinación de los deterioros

de la vía.

• Determinar el índice de pavimento (PCI) mediante la observación del grado de falla

del pavimento en la Avenida Circunvalación Norte.

• Proponer una alternativa de mantenimiento del pavimento que permita un adecuado

servicio de vialidad.

27

CAPITULO II: MARCO TEORICO

2.1 Antecedentes Contextuales

2.1.1 Macro

A nivel global, se han realizado estudios para evaluar el estado de la carpeta asfáltica, con el objetivo de comprender el tipo y la gravedad de las fallas en las carreteras. Los métodos empleados en estos estudios permiten identificar de manera precisa las fallas que requieren intervenciones de mantenimiento preventivo o reparaciones inmediatas, lo que contribuye significativamente a prolongar la vida útil de la carretera.

En Indonesia, los autores Sabaruddin and Deni en su artículo Application of pavement condition index (PCI) on the assessment of the Kalumata highway section of the City of South Ternate llevaron a cabo la aplicación del PCI mediante etapas de reconocimiento visual para determinar el tipo de nivel de daño y medir el daño de dimensiones que incluyen largo, ancho y profundidad, calculando el área de daño, analizando la condición de daño. Según sus resultados, la superficie de Kalumata se clasifica como un nivel de gravedad con un valor de PCI de 0,00 (Sabaruddin & Deni, 2020).

En cambio, los autores Ndume, Mlavi y Mwaipungu en su artículo Development of road Pavement Condition Index Using Combined Parameters estimaron el índice de condición del pavimento (PCI) utilizando el IRI como los parámetros de deterioro. Se tomaron en cuenta nueve parámetros para determinar el estado del pavimento, teniendo como resultado un 92.83% considerada como "buena", un 7.83% es "regular" y el 0.24% de la red vial pavimentada se la considero como "mala". Se concluyó, que combinando que utilizando los parámetros combinados se logró una mejor estimación, más sensible y acorde de la situación actual observada en campo (Ndume et al., 2020).

De forma semejante, en otra cuidad de Irak como Najaf se utiliza el PCI mediante la aplicación del software PAVER donde evalúa el pavimento flexible de algunas carreteras colectoras mineras en el sector norte de la ciudad como son las autopistas de garaje Al-Rahma, Al Hizam Al Akhdar y Al Muearid, Al Shamalii, que cubren una longitud total de aproximadamente 11,54 km en ambas direcciones de circulación del tráfico. Se ingresaron

datos como diseño geométrico, tipo de carretera, sección y gravedad de daño para que el software muestre que los tramos de las autopistas de garaje Al-Rahma y Al Shamalii se encuentran en un nivel satisfactorio. Por eso, con la ayuda del PCI nos damos cuenta de las fallas donde se requiere un mantenimiento preventivo o reparación inmediata aumentando la vida útil de la carretera (Saba & Khawla H. H., 2021).

2.1.2 Meso

En Sudamérica, en países como Perú, Colombia y Brasil, se han llevado a cabo investigaciones dedicadas a la evaluación del pavimento, utilizando métodos diversos como el PCI y VIZIR. Ambos métodos desempeñan un papel crucial al proporcionar información detallada sobre el deterioro de la carpeta asfáltica, orientando así las acciones necesarias para el mantenimiento y rehabilitación efectivos de las vías.

En Perú, se usó el método del PCI acompañado de una metodología alternativa para la evaluación superficial de pavimentos en vías urbanas, empleando imágenes georreferenciadas, obtenidas por un vehículo aéreo no tripulado (VANT) que se procesan generando una ortofoto y un modelo digital 3D de alta resolución. Con esto, se permite recolectar la información de manera más rápida, segura y precisa para la evaluación de la carpeta asfáltica con lo que se evita accidentes del personal y mayor información con el fin de establecer estrategias de mantenimiento y rehabilitación de vías urbanas (Cruz Toribio & Gutierrez Lazares, 2019).

De la misma manera, en la publicación Surface evaluation supported by the PCI method for the severity level of asphalt pavement on airport runways de los autores Mallqui y Quinto de Perú, aplicaron la metodología del PCI en función de los deterioros observados en la superficie de aterrizaje. Se realizó una inspección visual del pavimento asfaltico de la pista midiendo el área de deterioro registrando en la hoja dada por la norma ASTM D 5340 para luego usar el software EVALPAV, cuantificando los resultados arrojo un PCI promedio de 62 que significa "bueno" por lo que solo se recomendó una rehabilitación de dicha pista de aterrizaje (Quinto Prado & Mallqui Durand, 2023).

Mientras que, los autores Ramírez y Valenzuela abordaron una metodología de enfoque cuantitativo, descriptivo, no experimental aplicado con el índice de condición del Pavimento

(PCI). Así mismo, se realizó un estudio de tráfico y se inspecciono las condiciones actuales del pavimento para que según lo estipulado y usando el software HDM-4 se obtuvo un PCI general de 62%, calificado como "bueno", calificando a la vía de primer orden. Se recomendó, alternativas de mantenimiento viables como un mantenimiento superficial, que viene acompañado de un ligante bituminoso hacen que los criterios de evaluación muestren rentabilidad en el proyecto (Ramirez Medina & Valenzuela Robles, 2023).

En Colombia, usaron los métodos de VIZIR para pavimento flexible que permite clasificar los deterioros de pavimento en tipo A y B, y el PCI para la evaluación del estado y cantidad de daño presenta en las vías. Estos determinan la gravedad de daño en pavimento flexible y rígido; en este caso se usó técnicas de fotogrametría terrestre y redes neuronales que consiste en un sistema automatizado para recopilar imágenes de la carretera para seguido procesarlas, detectar los bordes y evaluar la afectación del deterioro. Se obtuvo una exactitud del 96% el cual puede contribuir una reducción en el tiempo y costo de mantenimiento de la infraestructura vial (Tello Cifuentes et al., 2021).

Por otro lado, en Brasil, (Pinatt et al., 2020) en su artículo Evaluation of pavement condition index by different Methods: Case study of Maringá, Brazil definió la utilización del método de condición del pavimento (PCI) aplicando el Sistema de Gestión de Pavimento Urbano (UPMS) para identificar los caminos más dañados. Se realizó una evaluación funcional objetiva y subjetiva, con identificación de defectos mediante análisis visual mediante el método PCI los cuales se compararon entre sí mediante el coeficiente de correlación de Pearson para posterior usarlos en ArcGis. Los resultados obtenidos arrojaron un 92.21% de los tramos son clasificados como "muy buenos" a "regulares" mientras que el 7.94% fueron clasificados como "malos" y "muy malos" (Pinatt et al., 2020).

2.1.3 Micro

En Ecuador, los autores de la publicación Evaluación de la Estructura de Pavimento en Carreteras de Montaña utilizaron la técnica del PCI para determinar el estado de la carpeta asfáltica combinada con análisis del suelo y pruebas de laboratorio para evaluar la resistencia del suelo considerando esta combinación de elementos importantes para una evaluación completa de carreteras de montaña. En base a los resultados del estudio realizado en una

franja de 30 metros a cada lado de la vía, se determinó que el 0,40% representa a las viviendas, el 0,87% a sector agrícola y el 98,73% a zona arbustiva, tras la evaluación del Índice de Condición del Pavimento (PCI), se obtuvo un valor de 49.93, lo que indica que el estado de la carpeta asfáltica de la vía Quera-Porotillo-Chilla es considerado "Regular" al encontrarse dentro del rango de 41 a 55 (Zapata Rogel et al., 2023).

2.2 Antecedentes Conceptuales

2.2.1 Carreteras

Las carreteras ofrecen una base fundamental en el crecimiento y desarrollo económico y social de un país porque permiten la movilización, confort y asequibilidad, por tal razón, requiere mantenerse en un estado de óptimas condiciones para el habitante (A. I. Andrade et al., 2021).

2.2.2 Vías urbanas

Las vías urbanas son carreteras dentro de la cuidad las cuales son muy importantes para interconectar los diferentes sectores debido al incremento de la población, por ello es que debido a la falta de gestión el deterioro de las vías está a simple vista y sin un mantenimiento adecuado, y buena parte de los municipios solo realizan tratamientos superficiales (Cruz Toribio & Gutierrez Lazares, 2019).

2.2.3 Suelo

El suelo es una variante de las más comunes en los parámetros geotécnicos, el cual se determina por su densidad y textura por diferentes tamaños de partículas. Las construcciones afectadas por el agua están influenciadas por partículas superficiales donde se consideran catalogarse mediante la granulometría (Mamani Gonzalo et al., 2023).

2.2.4 Asfalto

El autor nos dice que el asfalto es "el residuo de la destilación del petróleo que sirve como material cementante. Al elevar su temperatura lo suficiente, éste se ablanda y se transforma en líquido permitiéndolo recubrir las partículas de agregado durante la elaboración mezcla en caliente" (De La Cruz Vega et al., 2022).

2.2.5 Base

Está conformado de suelos naturales combinados con áridos triturados, la cual soporta el pavimento, por lo que debe tener espesores de buena calidad que soporten las solicitaciones de tráfico y las condiciones climáticas. (Sánchez Morales et al., 2020).

2.2.6 Subbase

Tiene dos funciones principales, proporcionar una estructura uniforme a la base y tener firmeza para su compactación. La mayoría de las veces se utilizan subbases granulares compuestas por materiales triturados parcialmente (Zambrano Mesa et al., 2020).

2.2.7 Pavimento

El pavimento es una parte importante de la red nacional de transporte, debe soportar las cargas de tránsito por lo que, es una estructura apoyada superficialmente sobre la subrasante y se diseña integrando capas horizontales con materiales apropiadas (Hoang, 2018).

2.2.8 Pavimento flexible

El pavimento flexible está constituido por varias capas (de rodadura, base y sub base), las cuales cumplen funciones importantes, como distribuir las cargas del tránsito de forma correcta, resistir agentes climatológicos, impermeabilizar el pavimento y tener una capa de rodadura cómoda y segura para el tránsito (Oblitas Gastelo et al., 2021).

2.2.9 Evaluación del pavimento

Para la evaluación del pavimento tenemos dos casos de estimación presentes como la evaluación funcional que indica las deficiencias en la regularidad de la superficie y el estado de la vía, también se conoce la evaluación estructural, que se relaciona con la capacidad de soporte a las cargas transmitidas por los vehículos (De La Cruz Vega et al., 2022).

2.2.10 Deterioro del pavimento flexible

El deterioro se debe principalmente al desarrollo y crecimiento de micro fisuras en materiales de pavimento flexibles y comúnmente se denomina fase de "iniciación de grietas". Esta fase se caracteriza y representa por la disminución del módulo dinámico y el aumento del ángulo

de fase; el ángulo de retraso está estrechamente relacionado con el grado de deterioro del pavimento, la velocidad de la carga en movimiento, las propiedades estructurales y materiales del pavimento (Deng et al., 2021).

Las fallas estructurales indica que estas deficiencias implican un desgaste del conjunto estructural de la vía que al ser sometido a cargas de tráfico vehicular sufren agrietamientos relacionados con la alteración por tensión de cada capa (Torres Torres & Muñoz Pérez, 2023).

2.2.11 Factor Camión

El factor camión está relacionado con un cierto nivel de confiabilidad y es de suma importancia en la fase de diseño, por lo que, se considera uno de los componentes principales para la estimación de la demanda de cargas que tendrá el pavimento de una carretera (Allen et al., 2020).

2.2.12 Deformaciones de la carretera

La deformación es la disposición del camino superficie de un perfil único que después de años de construcción se tergiversa y afectan al confort de la carretera por lo que genera incomodidad de la superficie y pueden reflejan daños a la estructura asfáltica, reduciendo significativamente la condición del asfalto (Freitas de Almeida et al., 2022).

2.2.13 Índice de Condición del Pavimento

El índice de condición de pavimento es un grado numérico de evaluación superficial de una vía, que se obtiene observando y midiendo el área dañada, reconociendo el tipo de deterioro en función de su densidad afectada. Se utilizan hojas de inspección, catálogo de fallas como referencia y su desarrollo es mediante inspección visual, no se emplean equipos de auscultación (Oblitas Gastelo et al., 2021).

El PCI se puede determinar de forma más rápida y sencilla mediante evaluaciones subjetivas las cuales son indicadas para ciudades donde, el mantenimiento se realiza sin planificación alguna, es una forma sencilla de evaluar el pavimento y tener buenos resultados (Pinatt et al., 2020).

2.2.14 Mantenimiento

Se considera un trabajo para mejorar las características funcionales y/o estructurales de servicio del pavimento a nivel de red, obteniendo resultados apropiados sugerentes a las propiedades de la capa (Ahmed et al., 2021).

2.2.15 Tipo de fallas en los pavimentos flexibles

Los pavimentos tienen diferentes tipos de fallas como grietas, baches, erosión, etc. No es fácil identificar los distintos deterioros del pavimento causado por las repeticiones de carga (Khahro, 2022). Se presenta una tabla con las diferentes fallas existentes:

Tabla 8: Clasificación de los tipos de fallas en pavimentos flexibles

Tipos de Fallas					
Ahuellamiento	m2				
Grieta parabólica	m2				
Piel de cocodrilo	m2				
Desplazamiento	m2				
Pulimiento de agregados	m2				
Desprendimiento de agregados	m2				
Hinchamiento	m2				
Exudación	m2				
Agrietamiento en bloque	m2				
Depresión	m2				
Parcheo	m2				
Cruce de vía férrea	m2				
Corrugación	m2				
Abultamiento y hundimientos	m				
Grieta de borde	m				
Grieta de reflexión de junta.	m				
Desnivel carril/espaldón.	m				
Grieta longitudinal y/o transversal	m				
Huecos	N°				

Fuente: Autor

2.2.16 Severidad

La severidad se reconoce mediante los siguientes niveles: baja (L), media (M) y alta (H). La clasificación baja (L) manifiesta ligeras vibraciones, la clasificación media (M) declara vibraciones considerables y requiere reducción de velocidad y alta (H), significa una afectación alta y tiene un alto potencial de daño al vehículo (Oblitas Gastelo et al., 2021).

2.2.17 Clasificación de PCI

La clasificación de la condición del pavimento se determina a partir de una correlación que presenta la calificación de la condición del pavimento como función del valor PCI. La condición visual recopilada tiene tres diferentes aspectos como el índice presente, el malestar y el ritmo de deterioro por lo que el valor en sí proporciona una idea general del estado del pavimento y un valor PCI basado en el rango de 0 a 100 y reflejará el trabajo que se requerirá para rehabilitarlo (Amanah, 2023).

Se presenta una tabla con la clasificación del PCI, según la norma (ASTM D6433, 2003)

Tabla 9: Clasificación del PCI

PCI	Clasificación
85-100	Excelente
70-85	Muy Buena
55-70	Buena
40-55	Regular
25-40	Malo
10-25	Muy Malo
0-10	Fallado

Fuente: Autor

2.3 Antecedentes Referenciales

En Indonesia, la degradación de la calidad de la carretera afecta a la seguridad y el confort de los usuarios de la vía, es por eso que se describe el método del PCI donde evalúan las condiciones del pavimento de la carretera a través de un estudio de campo realizado para

determinar el estado físico de los tramos de carretera estudiados incluyendo tipo, nivel y extensión del daño en el tramo Kudus East Ring Road, Pati Ring tramo de la carretera de circunvalación y carretera Wangon-Menganti, para posteriormente estimar la condición. Los resultados en la Kudus East Ring Road se la denomino con la condición de "pobre" con un porcentaje del 34% y un valor promedio de PCI de 57.05, en el tramo de carretera Pati Ring se denominó como "regular" con un porcentaje del 40% y con un valor del PCI de 60.57 y finalmente la vía Wangon-Menganti se la señalo como "buena" con un porcentaje del 46% y un valor promedio del PCI del 78.35 (Rifai et al., 2023).

Mientras que, en Panamá, Justavino, Tiemann y Morales en su artículo Evaluación y clasificación de vías en el corregimiento de David Sur, aplicando el método PCI expone el estudio de tres calles debido a el nulo mantenimiento y alto volumen de tráfico promoviendo el uso del método del PCI, el cual es un indicador de la condición del pavimento, se puede relacionar con parámetros de IRI y PSI. Los resultados obtenidos de la Calle M Sur usada por un variado tráfico, la clasificación obtenida según el método PCI está en una clasificación grave con un PCI promedio de 11, la Calle Z Sur, se encuentra en una clasificación pobre con un PCI promedio de 48 y la Calle 1ra siendo de concreto o pavimento rígido tiene un PCI promedio de 52 ubicándose en la clasificación de pobre, lo que llevo a la conclusión que se requiere una reconstrucción de estas vías (Justavino et al., 2023).

En Ecuador, los autores Flores y Mogrovejo con su artículo Evaluación funcional del pavimento flexible en la red vial rural de Portoviejo, Ecuador tuvo como objetivo diagnosticar el estado del pavimento de la red vial rural mediante la recolección de datos, observación y registro de fallas por medio de la metodología PCI (Índice condición del pavimento), el IRI (Índice de Regularidad del Pavimento) y el PSI (Índice de serviciabilidad de pavimento). Esto incide en la clasificación por severidad de fallas que presentaron cuando se realizó el levantamiento de información de las cuales se registró 6 tipos de fallas en las 11 unidades de muestra analizadas, dando como resultados una calificación de 77 que lo ubica como clasificación "muy bueno" en el tramo vial ubicado entre el sitio Mejía y el sitio Pechiche el cual se conecta por una vía rural de 5500 m de largo y 6.40 m de ancho (Flores De Valgas Giler & Mogrovejo Carrasco, 2023).

CAPÍTULO III: METODOLOGÍA

3.1 Modalidad básica de la investigación

La modalidad del presente proyecto tiene un enfoque mixto, dado que cuenta con una investigación sistemática, la que se basa en la recolección de información y análisis bibliográfico; también se empleó una modalidad practica con carácter cuantitativo, a partir de pruebas o datos numéricos a través de fichas de observación, las cuales nos permite obtener un detalle descriptivo.

3.2 Tipo de investigación

El presente estudio se basó en dos tipos de investigación: la documental, que requiere la búsqueda de información y la de campo, por motivo que se identifica en el lugar de estudio algunas particularidades en el pavimento a través del análisis de resultados como fichas de observación. Además, se tiene un contexto aplicado, ya que solucionas problemas viales a la comunidad con la finalidad de mejorar el desarrollo vial de la cuidad.

3.3 Descripción de la Población y Muestra

3.3.1 Población Referencial

El área de influencia que se enfoca el proyecto de la Avenida Circunvalación Norte desde la Av. La Primavera hasta la Av. 10 de Agosto, cuenta con 43797 habitantes aproximadamente correspondiente a la parroquia Machala y Jubones. En fin, este impacto víal se traduce en el crecimiento económico y próspero de la cuidad.

3.3.2 Tamaño de muestra

Para obtener una muestra de la población se utilizan los criterios específicos de la norma ASTM D6433-03 en la sección 2.1.7 nos menciona el área de muestreo, lo cual mediante un cálculo se definirá un intervalo en la Av. Circunvalación Norte por el que estarán separadas cada unidad de muestreo. En la siguiente tabla se muestra las longitudes máximas y mínimas para la longitud de muestreo asfaltico.

Tabla 10: Longitudes de muestreo asfaltico

Ancho de Calzada (m)	Longitud de la unidad de muestreo (m)
5.0	46.00
5.5	41.80
6.0	38.30
6.5	35.40
7.3 (máximo)	31.50

3.4 Métodos Empíricos con los Materiales Utilizados

3.4.1 Método Empírico

El enfoque PCI para la evaluación del estado actual de la Av. Circunvalación Norte desde la Av. La Primavera hasta la Av. 10 de Agosto produce un grado de importancia e impacto en la vía. Esta técnica asigna un índice numérico de 0 a 100 a un pavimento, en el cual una vía en mal estado se le asigna una valoración menor, mientras que un pavimento en buen estado o excelente estado recibe un índice 100.

3.4.2 Materiales e Instrumentos

Para la evaluación del estado actual del pavimento se ocupa lo siguiente:

- Hoja de cálculo de Excel para el registro de la información de datos PCI para cada tramo de estudio.
- Casco y chaleco.
- Flexómetro.
- Cintra de 50 metros.
- Aerosol para marcar las abscisas de los tramos.
- Teléfono para registrar las fallas existentes en la carretera.

3.5 Técnicas para el Procedimiento de los Datos Obtenidos

3.5.1 Inspección Visual

Esta tarea es crucial porque identifica las fallas en el pavimento del tramo de estudio; el resultado dependerá de la precisión con la que se midan y reconocen las fallas. Se debe

realizar con cuidado, lo que implica registrar todas las fallas identificadas y comparar las fallas existentes con las identificadas en el manual de fallas. El objetivo de esta actividad es mostrar el estado del pavimento mediante el registro fotográfico de cada una de las fallas identificadas.

3.5.2 Unidades de Muestreo

Se indica que el pavimento se lo debe dividir por segmentos para recoger las unidades de muestra, según el procedimiento estándar para la inspección del índice del PCI. Según la (ASTM D6433, 2003) nos dice que para determinar el área de cada unidad a evaluar se lo determina basándose en lo que indica el inciso 2.1.7 donde afirma que el área de unidad de muestra debe de mantener los márgenes máximos de 315 m2 de área de estudio y como mínimo 135 m2 de área por evaluar.

3.5.3 Determinación de las Unidades de Muestreo

Para la determinación de las unidades de muestreo, lo hacemos con la siguiente ecuación, la cual se la determina dividiendo la longitud total de la vía sobre la longitud de la muestra.

Ecuación 1:

$$N = \frac{Longitud \ de \ v\'ia}{Longitud \ de \ muestra}$$

Así mismo, en diferentes ocasiones los resultados suelen ser muy altos en las unidades de muestreo, por lo que costaría muchos recursos su evaluación. Por aquello, existe una solución que se la realiza con la siguiente ecuación, la cual nos dicta que es posible realizar la evaluación de la vía con un número mínimo de unidades de muestro.

Ecuación 2:

$$n = \frac{N * \sigma^2}{\frac{e^2}{4} * (N-1) + \sigma^2}$$

Donde:

n= Unidades para evaluadas.

N= Número total de unidades totales de muestro.

S= Desviación estándar para el asfalto.

e= Margen de error

3.5.4 Intervalo de unidades de muestreo

Para calcular el intervalo de las unidades de muestreo se recomienda dividir el número total de muestras considerando solo la parte entera y el número mínimo de unidades muestreo, como se expresa en la siguiente ecuación:

Ecuación 3:

$$i = \frac{N}{n}$$

3.5.5 Información de fallas

Cuando se determina las unidades de muestreo, se determina mediante la inspección visual el tipo de falla como se muestra en la tabla 8, la severidad del pavimento flexible y su nivel según su grado de daño.

Tabla 11: Niveles de severidad

Nivel de Severidad						
Baja	Low	L				
Media	Medium	M				
Alta	High	Н				

Fuente: Autor

Se debe registrar cada falla indicando el daño correspondiente, la severidad, la unidad de medida, la ubicación, tomando en cuenta los ejes abscisas y ordenadas, la longitud y ancho de la falla en metros y finalmente, el área total en metros cuadrados por cada falla, esta se denominará cantidades parciales y el total sería la suma si en este caso existiera más de una

falla recurrente en el tramo de vía analizada. La hoja de registro donde se deben anotar los valores anteriores se muestra en la siguiente tabla.

Más adelante, esta información se utiliza para calcular la calificación PCI por unidad de muestra.

Tabla 12: Hoja de Excel para el registro de fallas del pavimento flexible

FALLA	SEVERIDAD	CANTIDADES PARCIALES	TOTAL	DENSIDAD	VALOR DEDUCIDO
				VD	

Fuente: Autor

3.5.6 Valores deducidos

Después de anotar todas estas fallas en las hojas de registro, la norma nos pide calcular el valor deducido en la cual se indica la división de la cantidad total de cada tipo de falla dependiendo de su severidad, entre el área total de la unidad de muestra correspondiente, y luego se multiplica el resultado por 100 para obtener la densidad porcentual, por consiguiente se usas las curvas de valor deducido de fallas que se muestran en las siguientes graficas conocidas como valor deducido del daño (ASTM D6433, 2003).

Se reflejará las gráficas de los daños existentes en nuestra vía, con los que se ha calculado los valores deducidos, las cuales se han tenido que realizar por el autor por cuestión de visualización, debido a las que de la Norma ASTM-D6433-03 no se pueden apreciar de la mejor manera.

Ilustración 6: Curva de Valor Deducido de Piel de Cocodrilo

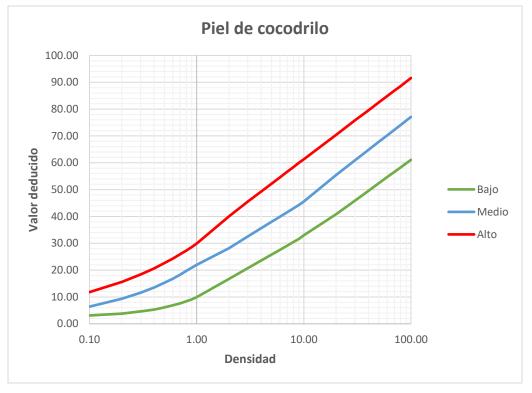
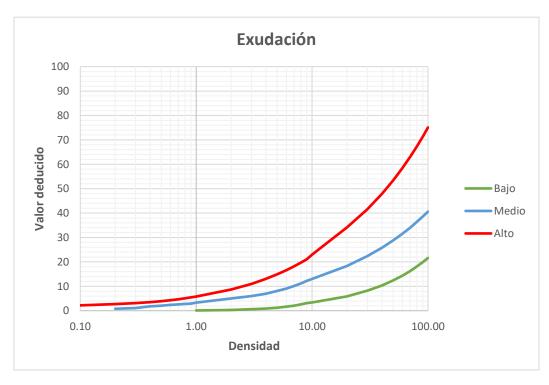


Ilustración 7: Curva de Valor Deducido de la Exudación



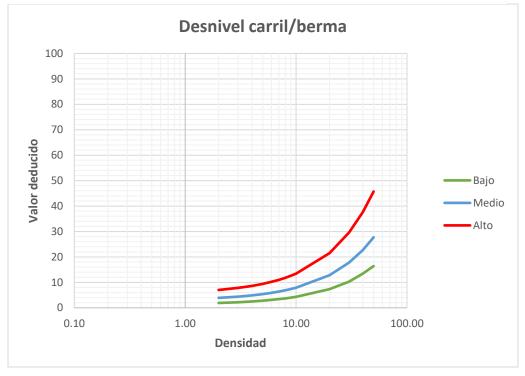

Ilustración 8: Curva de Valor Deducido para el Abultamiento y Hundimiento

Ilustración 9: Curva de Valor Deducido para Grieta de Borde

Ilustración 10: Curva de Valor Deducido para el Desnivel

Ilustración 11: Curva de Valor Deducido Para las Grietas Longitudinales y Transversales

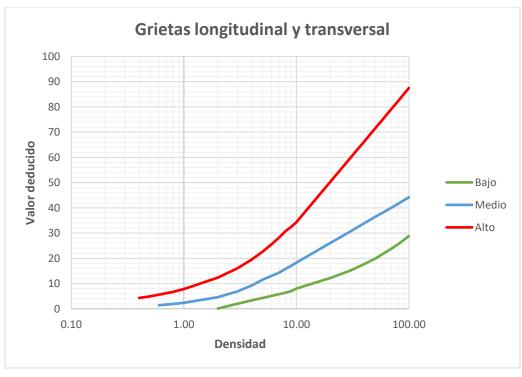


Ilustración 12: Curva de Valor Deducido para el Parcheo

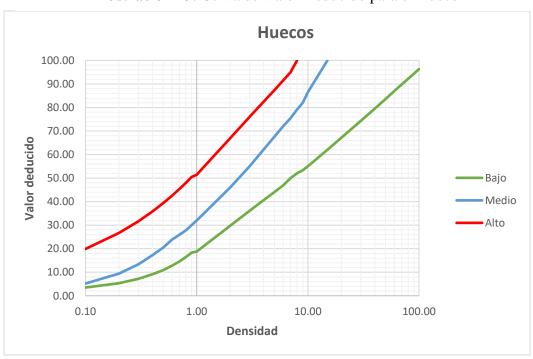



Ilustración 13: Curva de Valor Deducido para el Hueco

Desprendimiento de agregados 100.00 90.00 80.00 70.00 Valor deducido 60.00 50.00 Bajo Medio 40.00 Alto 30.00 20.00 10.00 0.00 0.10 1.00 10.00 100.00 **Densidad**

Ilustración 14: Curva de Valor Deducido para el Desprendimiento de Agregados

Después de las gráficas de curvas de valor deducido del daño, se registra en una hoja como en la siguiente tabla, las fallas existentes en base a los resultados.

Tabla 13: Hoja de Excel para registro de valores deducidos

FALLA	SEVERIDAD	UNIDAD	LARGO	ANCHO	PROFUNDIDAD	CANTIDADES PARCIALES	TOTAL

Fuente: Autor

3.5.7 Número Máximo Admisible de Valores Deducidos

Los valores deducidos individuales deben sumarse para calcular el número máximo admisible de valores deducidos. Luego se calculará el número máximo de valores deducidos utilizando la ecuación siguiente. Tomando en cuenta que, si la cantidad de valores deducidos es menor que el valor m, todos los valores deben tomarse en cuenta (ASTM D6433, 2003).

Ecuación 4:

$$m = 1 + \frac{9}{98} * (100 - HDV)$$

Tabla 14: Hoja de Excel de numero admisible de valores deducidos

Número de valores deducidos (q) >2	
Valor deducido más alto (HVDi)	
Número máximo de valores deducidos (mi)	

Fuente: Autor

3.5.8 Valor deducido corregido y clasificación PCI

Para este cálculo, se determina el valor de números deducidos q, mayores que 2 y se los coloca individualmente de derecha a izquierda, reduciendo a un solo valor individual. La norma nos indica que los valores son corregidos mediante las gráficas de la curva y aplicar la ecuación correspondiente se restara 100 el valor deducido corregido (ASTM D6433, 2003).

Tabla 15: Calculo del valor deducido corregido

	CÁLCULO DE VALOR CORREGIDO DEDUCIDO							
N°		VAL	ORES DE	EDUCIDOS		VDT	q	VDC
	MÁXIMO VDC							

Fuente: Autor

VALORES DEDUCIDOS CORREGIDOS 120 110 100 90 Valor deducido corregido 70 q2 60 q3 q4 **a**5 40 q6 30 q7 20 10 $0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100 \ 110 \ 120 \ 130 \ 140 \ 150 \ 160 \ 170 \ 180 \ 190 \ 200 \ 210$ Total de los valores deducidos

Ilustración 15: Curva de Valores Deducidos Corregidos

Por último, después de obtener el valor deducido corregido según la gráfica, obteniéndolos a partir de los valores del VDT y q, se escoge un máximo VDC, el cual se va aplicar en la siguiente ecuación y según ese resultado sabremos la clasificación de la vía, dependiendo el rango en el que se encuentre como se muestra en la tabla 9.

Ecuación 5:

PCI = 100 - Máximo VDC

3.5.9 Nivelación topográfica

La realización de una nivelación topográfica preciso en el tramo de carretera escogido para su evaluación es esencial, ya que sirve como base para la selección de criterios complementarios necesarios para las recomendaciones finales. Estas herramientas de aprendizaje profundo existentes para la generación de redes de carreteras tienen aplicaciones en áreas urbanas planas debido a sus configuraciones geométricas y espaciales de las redes de calles y consideraciones de la información topográfica (Fang et al., 2022).

Para la nivelación topográfica se usó el equipo GOLD 26 D PROFESSIONAL, el cual tiene un alcance máximo de 100 m con una precisión de ± 1.6mm cada 30 m.

Los pasos realizados para el levantamiento se detallan a continuación:

Primero, se dividió la Av. Circunvalación Norte en tres tramos de carretera, comenzando desde la Av. La Primavera hasta la Av. Juan Montalvo con un segmento de vía de 185.63 metros, siguiendo por la Av. Juan Montalvo hasta la Av. Buenavista con un trecho de 461.20 metros y por ultimo como tercer tramo desde la Av. Buenavista hasta la Av. 10 de Agosto con un abscisado de 364.50 metros, dándonos como longitud total de vía 1011.33 metros lineales.

A continuación, se procede a nivelar el equipo utilizando la burbuja para ir ubicando el equipo en una superficie nivelada, una vez finalizada esta tarea se procede a ubicar un BM inicial de referencia, en este caso se decidió poner 10 por lo que solo se está procediendo a conocer las cotas altimétricas entre el bordillo y el asfalto de la carretera.

Finalmente, se inició con la nivelación tomando cotas cada 20 metros en tramos rectos. Estos puntos fueron ubicados en los dos laterales de la vía, en el eje de la calzada y en los bordillos al costado de la vía y del parterre. Los datos recopilados en esta nivelación nos sirven para analizar la diferencia entre el bordillo y el asfalto en promedio de altura por tramos, dándonos así valores referenciales de desniveles por la acumulación de asfalto o sobre capeo en la carretera.

CAPÍTULO IV: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 Determinación del índice del estado del pavimento

El uso de métodos estadísticos para determinar de forma aleatoria cuantas y cuales unidades muéstrales de una carretera es posible evaluar, ya que todas las unidades a inspeccionar requieren un excesivo costo y tiempo (García Depestre et al., 2021). Es por esto, que, siguiendo los pasos de la metodología aplicada en cada unidad de muestreo sin comprometer la precisión de los resultados, se ha recolectado los datos mediante una inspección visual de las fallas en el tramo de vía de la Avenida Circunvalación Norte. Para la evaluación y registro del estado actual del pavimento se utilizó cinta, casco, chaleco y aerosol para la determinación de los tramos, además la colaboración de una persona, que se encargaba de ayudar con las mediciones. Las fotográficas de las fallas se las encuentra en cada una de las fichas de observación ubicada en los anexos.

La evaluación se materializo desde la intersección de la Avenida Circunvalación Norte y la Avenida la Primavera tomando como punto base la abscisa 0+000 y finalizando en la confluencia con la Avenida 10 de Agosto como abscisa 1+011. La evaluación se realizó en un día en el horario de la mañana de 8 am hasta las 11:30 am y para el horario de la tarde desde las 14:00 hasta las 17:00, escogiendo estos horarios para no tener la mayor afluencia de carro por la hora pico. Los autores (Salviatto et al., 2021) aclaran que muchos solo evalúan el estado del pavimento basándose en los daños existentes, sin considerar otras características de la carretera que contribuyen al deterioro del pavimento.

Tenemos a la avenida Circunvalación Norte una arteria vial de las más importantes de la cuidad con una longitud de 1011.33 metros en el tramo de carretera evaluado, con un ancho de calzada de 14.80 metros a doble carril por lado y un parterre a la mitad de 2 metros de longitud, dándonos así, un ancho de pista de 16.80 metros.

4.1.1 Calculo de la muestra y unidad de muestra

Para la longitud de unidad de muestra que conforman el tramo de vía seleccionado, tenemos una referencia en la tabla 10 en relación al ancho de calzada, sin embargo, nuestro ancho de carretera es muy superior a estos valores, teniendo un valor de 16.80 metros. Al revisar el

inciso 2.1.7 de la norma (ASTM D6433, 2003), estos mencionan que el área de muestreo es 225 ± 90 m2. Por lo que, escogiendo una longitud de 18 metros esta no sobrepasaría el área máxima estipulada en la norma.

$$B = 16.8 \, m$$

$$L = 18.0 m$$

$$A = B * L = 16.8 * 18 = 302.40 m^2$$

4.1.2 Calculo de unidades a ser evaluadas

Para el cálculo total del número de unidades de muestreo a ser evaluadas en el tramo de vía, dividimos la longitud total de 1011.33 metros para la longitud de la muestra de 18 metros como lo muestra la ecuación 1.

$$L = 18.0 m$$

$$L_V = 1011.33 m$$

$$N = \frac{1011.33}{18} = 56.185$$

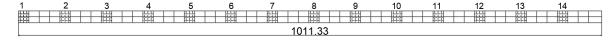
Para este cálculo hemos obtenido un total de 56 muestras totales para ser evaluadas en la sección del pavimento flexible, pero hasta cierto punto, esto resultaría con los gastos de muchos recursos y tiempo para su apreciación. Es por esto, que la norma ASTM D6433-03 en el inciso 7.5.2 nos indica que se puede calcular un número de unidades mínimas de muestreo como se indica en la ecuación 2.

Debemos tomar en cuenta que el valor de la desviación estándar del PCI entre las unidades es 10, visto que se considera como evaluación inicial y el error admisible en el estimativo del PCI es 5%.

$$n = \frac{56 * 10^2}{\frac{(5 * 100)^2}{4} * (56 - 1) + 10^2} = 13$$

4.1.3 Selección de la unidad de muestreo

Para calcular el intervalo de las unidades de muestreo se utiliza la ecuación 3, dividiendo el número total de muestras y el número mínimo de unidades muestreo.


$$i = \frac{56}{13} = 4.308$$

En consecuencia, de que en este cálculo del número de muestras solo se tome la parte entera tenemos:

$$i = 4$$

Con este valor de la unidad de muestreo de 4, podemos empezar a contabilizar los tramos a evaluar en la carretera, comenzando con la muestra 1 a partir del tramo 1, dando como desenlace 14 unidades finales de muestreo a ser evaluadas. Esto sucede, ya que al hacer la representación gráfica podemos aumentar una unidad más dentro del rango a estimar y así podremos aumentar la precisión de los resultados.

Ilustración 16: Representación gráfica de las unidades a evaluar

Fuente: Autor

4.1.4 Resultados de la unidad de muestreo del tramo 1

Una vez especificado los tramos y las unidades mínimas de muestreo, se realiza la evaluación de campo donde se indica las fallas registradas en el tramo 1. En la siguiente tabla se selecciona las deficiencias en el segmento designado.

Tabla 16: Designación del tipo de fallas existentes en el tramo 1

TIPO DE FALLAS							
1 Piel de cocodrilo	PC	m²	11 Parcheo	PA	m²		
2 Exudación	EX	m²	12 Pulimiento de agreg.	PU	m²		
3 Agrietamiento en bloque	BLO	m²	13 Huecos	HUE	unid.		
4 Abultamiento y hundimiento	ABH	m²	14 Cruce de vía férrea	CVF	m²		

5 Corrugación	COR	m²	15 Ahuellamiento	AHU	m²
6 Depresión	DEP	m²	16 Desplazamiento	DES	m²
7 Grieta de borde	GB	m	17 Grieta parabólica	GP	m²
8 Reflexión de juntas	CR	m	18 Hinchamiento	HN	m²
9 Desnivel	DN	m			
10 Grietas long. Y transv.	GLT	M	19 Desprendimiento de agregados	DAG	m²

4.1.4.1 Registro de fallas del tramo 1

En la tabla 17 se muestran las fallas identificadas en la unidad de muestreo 1, su severidad, sus dimensiones en metros para finalmente poder calcularlos en m2 o metros dependiendo de la grieta.

Tabla 17: Registro de fallas con sus respectivas cantidades totales en el tramo 1

FALLA	SEVERIDAD	UNIDAD	LARGO	ANCHO	PROFUNDIDAD	CANTIDADES PARCIALES	TOTAL
DAG	M	m²	0.40	0.50		0.20	
DAG	M	m²	0.30	0.60		0.18	0.00
DAG	M	m²	0.60	0.20		0.12	0.98
DAG	M	m²	1.60	0.30		0.48	
PA	Н	m²	1.80	0.70		1.26	
PA	Н	m²	2.20	0.42		0.92	
PA	Н	m²	1.10	0.65		0.72	50.60
PA	Н	m²	3.00	0.90		2.70	
PA	Н	m²	18.00	2.50		45.00	
PC	Н	m²	9.20	0.70		6.44	<i>(5</i> 0
PC	Н	m²	0.45	0.30		0.14	6.58
GB	Н	m	1.60			1.60	1.60
ABH	Н	m²	2.70	1.00		2.70	2.70

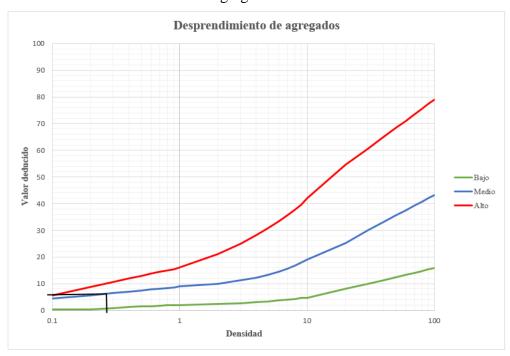
Fuente: Autor

4.1.4.2 Calculo de los valores deducidos para el tramo 1

Posteriormente de haber registrado todas las fallas de cada muestra, de acuerdo a su respectiva severidad para calcularle las cantidades parciales y totales, se procede a encontrar los valores deducidos para el tramo 1 con la ayuda de los ábacos de valores respectivas para

cada deficiencia. En este caso, las curvas dependen del valor de la densidad y eso se calcula dividiendo la cantidad total de cada ejemplar sobre el área de la muestra.

Falla DAG (Desprendimiento de agregados)


 $Nivel\ de\ severidad=M$

Área de la muestra $1 = 302.40 m^2$

 $Total = 0.98 \, m^2$

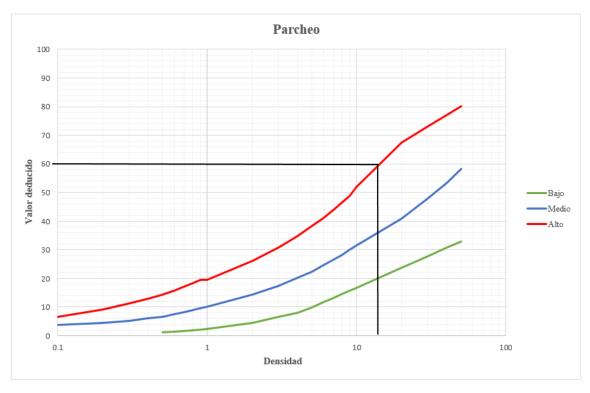
$$Densidad = \frac{0.98}{302.40} * 100 = 0.32 \%$$

Ilustración 17: Determinación del valor deducido para desprendimiento de agregados

Fuente: Autor

 $Valor\ deducido = 5.25$

Falla PA (Parcheo)


 $Nivel\ de\ severidad = H$

Área de la muestra $1 = 302.40 m^2$

 $Total = 50.60 \, m^2$

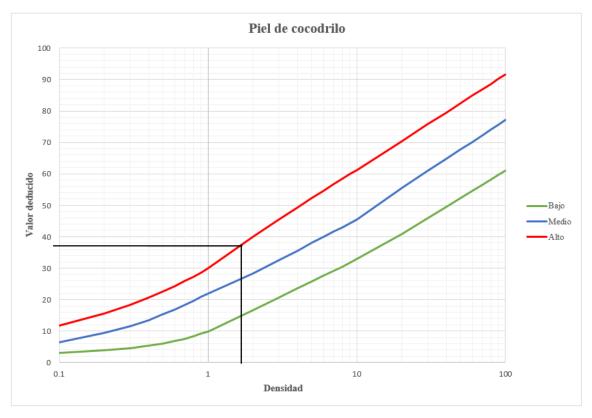
 $Densidad = \frac{50.60}{302.40} * 100 = 16.73 \%$

Ilustración 18: Determinación del valor deducido para parcheo

Fuente: Autor

 $Valor\ deducido = 60.0$

Falla PC (Piel de Cocodrilo)


 $Nivel\ de\ severidad=H$

Área de la muestra $1 = 302.40 m^2$

 $Total = 6.58 m^2$

$$Densidad = \frac{6.58}{302.40} * 100 = 2.17 \%$$

Ilustración 19: Determinación del valor deducido de la piel de cocodrilo

 $Valor\ deducido = 37.66$

Falla GB (Grieta de Borde)

 $Nivel\ de\ severidad = H$

Área de la muestra $1 = 302.40 m^2$

Total = 1.60 m

$$Densidad = \frac{1.60}{302.40} * 100 = 0.53 \%$$

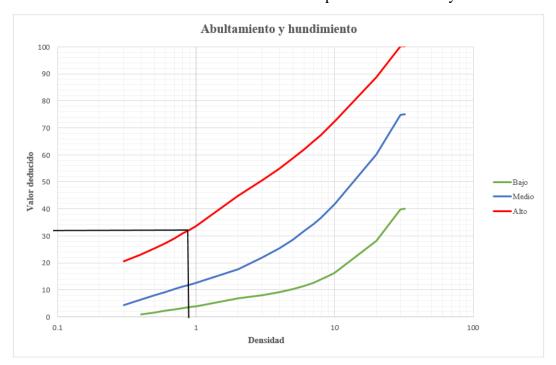
Grieta de borde 100 90 80 70 60 Valor deducido 50 •Bajo 40 -Alto 30 20 10 10 100

Ilustración 20: Determinación del valor deducido de grieta de borde

Densidad

 $Valor\ deducido = 7.70$

Falla ABH (Abultamiento y Hundimiento)


 $Nivel\ de\ severidad = H$

Área de la muestra $1 = 302.40 m^2$

 $Total = 2.70 m^2$

$$Densidad = \frac{2.70}{302.40} * 100 = 0.89 \%$$

Ilustración 21: Determinación del valor deducido para Abultamiento y Hundimiento

 $Valor\ deducido = 33.50$

Tabla 18: Registro de los valores deducidos en el tramo 1

FALLA	SEVERIDAD	CANTIDADES PARCIALES	TOTAL	DENSIDAD	VALOR DEDUCIDO	
DAG	M	0.20				
DAG	M	0.18	0.98	0.324	5.25	
DAG	M	0.12	0.96	0.324	3.23	
DAG	M	0.48				
PA	Н	1.26				
PA	Н	0.92				
PA	Н	0.72	50.599	16.732	60	
PA	Н	2.70				
PA	Н	45.00				
PC	Н	6.44	6.575	2.174	27.66	
PC	Н	0.14	0.373	2.174	37.66	
GB	Н	1.60	1.6	0.529	7.7	
ABH	Н	2.70	2.7	0.893	33.5	
				VD	144.11	

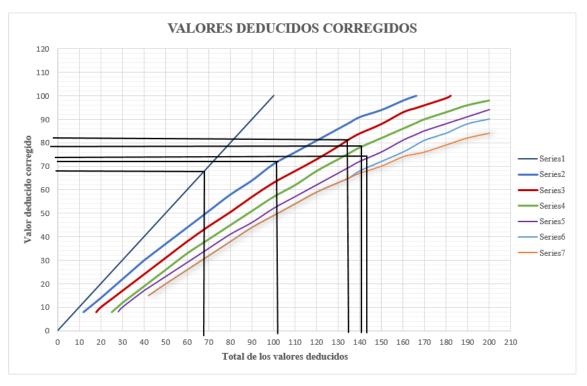
Fuente: Autor

Una vez determinado los valores deducidos con la ayuda de los ábacos, procedemos a colocar el número más alto deducido, que para el tramo 1 es HDV=60. Nos toca determinar el número de valores deducidos que es igual a 5 y el número máximo de valores con la siguiente formula.

$$m = 1 + \frac{9}{98} * (100 - 60.0)$$
$$m = 4.67$$

El dato significa que debemos considerar al menos 5 fallas representativas de las que se plantean.

Tabla 19: Registro del número máximo de valores deducidos y el HDV


Número de valores deducidos (q) >2	5
Valor deducido más alto (HVDi)	60.00
Número máximo de valores deducidos (mi)	4.67

Fuente: Autor

4.1.4.3 Calculo de los valores corregidos y el PCI del tramo 1

En esta nueva etapa, debido a que cinco números de los valores deducidos son mayores que dos, se aplica el método del cálculo de valores deducidos corregidos de los factores previamente analizados con los ábacos. Se determina el valor deducido total de la serie de cada unidad de muestro sumando todos los valores individuales y aparte el valor de q para reconocer que curva le toca a cada uno de los resultados sumados anteriormente, para así emplear la curva de corrección para el pavimento flexible.

Ilustración 22: Valores deducidos corregidos del tramo 1

Posteriormente de determinar los valores corregidos con la ayuda de los ábacos, se plantea encontrar el VDC máximo y así encontrar el valor del PCI con la siguiente ecuación, como se refleja en la tabla posterior.

$$PCI = 100 - 82 = 18$$

Tabla 20:Calculo de valores corregidos y VDC máximo

CÁLCULO DE VALOR CORREGIDO DEDUCIDO								
N°	VALORES DEDUCIDOS					VDT	q	VDC
1	60	37.66	33.5	7.70	5.25	144.11	5	74.00
2	60	37.66	33.5	7.70	2.0	140.86	4	78.50
3	60	37.66	33.5	2.0	2.0	135.16	3	82.00
4	60	37.66	2.0	2.0	2.0	103.66	2	72.30
5	60	2.0	2.0	2.0	2.0	68.0	1	68.70
MÁXIMO VDC						82		
ÍNDICE DE CONDICIÓN DEL PAVIMENTO (PCI)						18		
CONDICIÓN DEL ESTADO DEL PAVIMENTO								

Fuente: Autor

Como se ve reflejado en la tabla 20, el valor obtenido de PCI de 18 se encuentra en el rango de muy malo, según la norma ASTM-D6433-03.

4.2 Análisis de resultados e interpretación de datos

4.2.1 Determinación del PCI promedio

Inmediatamente a continuación de haber terminado el proceso del cálculo del PCI en todas las unidades de muestra, se puede contemplar el resumen en la siguiente tabla 21 y de manera gráfica porcentualmente en la ilustración

Tabla 21: Resumen de PCI de las 14 unidades de muestra

UNIDAD DE MUESTRA	PROG. INICIAL (KM)	PROG. FINAL (KM)	ÁREA (m2)	MAX V.D.C	(PCI) CALCULADO	CLASIFICACIÓN DEL PAVIMENTO	SIMBOLOGÍA
M - 01	KM 0+000	KM 0+018	302.4 m²	82	18.00	MUY MALO	
M - 02	KM 0+072	KM 0+090	302.4 m²	77.7	22.30	MUY MALO	
M - 03	KM 0+144	KM 0+162	302.4 m²	42.10	57.90	BUENO	
M - 04	KM 0+216	KM 0+234	302.4 m²	72.00	28.00	MALO	
M - 05	KM 0+288	KM 0+306	302.4 m²	45.28	54.72	REGULAR	
M - 06	KM 0+360	KM 0+378	302.4 m²	60.00	40.00	REGULAR	
M - 07	KM 0+432	KM 0+450	302.4 m²	93.66	6.34	FALLADO	
M - 08	KM 0+504	KM 0+522	302.4 m²	65.169	34.83	MALO	
M - 09	KM 0+576	KM 0+594	302.4 m²	67.40	32.60	MALO	
M - 10	KM 0+648	KM 0+666	302.4 m²	40.04	59.96	BUENO	
M - 11	KM 0+720	KM 0+738	302.4 m²	55.26	44.74	REGULAR	
M - 12	KM 0+792	KM 0+810	302.4 m²	52.47	47.53	REGULAR	
M - 13	KM 0+864	KM 0+882	302.4 m²	48.28	51.72	REGULAR	
M - 14	KM 0+936	KM 0+954	302.4 m²	32.20	67.80	BUENO	

Fuente: Autor

CLASIFICACIÓN DEL PCI

1.12 %

7.11 %

32.78 %

42.14 %

• EXCELENTE = MUY BUENO = BUENO = REGULAR • MALO • MUY MALO = FALLADO

Ilustración 23: Resumen de PCI en las 14 unidades de muestra

Entonces, para el valor del PCI promedio de la vía según las 14 unidades de muestreo se realiza el siguiente calculo:

$$PCI_{promedio} = \frac{Suma\ total\ del\ PCI}{Número\ de\ muestras} = \frac{566.44}{14} = 40.46$$

El valor calculado para la vía es de 40.46, lo cual este valor nos indica que la Avenida Circunvalación Norte en el tramo de la Avenida la Primavera hasta la Avenida 10 de Agosto tiene una condición REGULAR según los resultados. De igual manera, considerando la evaluación se puede apreciar que el 16.85% del tramo se encuentra en un estado de Malo, un 7.11% se localiza en Muy Malas condiciones y un 1.12% en Fallado respectivamente.

4.2.2 Fallas Existentes en el tramo de vía designado

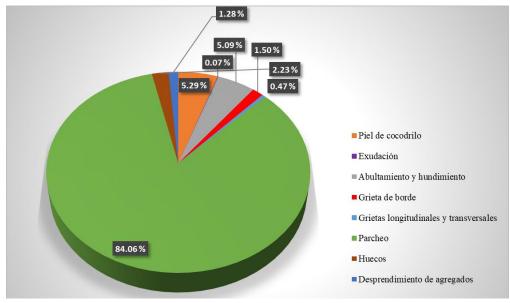

De acuerdo a la norma (ASTM D6433, 2003), indica que se pueden presentar 19 fallas en un pavimento flexible, no obstante, en el tramo de vía estudiado se han encontrado 8 fallas en las 14 unidades de muestreo. En la siguiente tabla, se detalla la cantidad de fallas registradas.

Tabla 22: Fallas registradas en las unidades de muestreo

N°	TIPO DE FALLA	UNIDAD	CANTIDAD
1	Piel de cocodrilo	m²	35.57
2	Exudación	m²	0.50
3	Agrietamiento en bloque	m²	0.00
4	Abultamiento y hundimiento	m²	34.20
5	Corrugación	m²	0.00
6	Depresión	m²	0.00
7	Grieta de borde	M	10.08
8	Reflexión de juntas	M	0.00
9	Desnivel	M	0.00
10	Grietas longitudinales y transversales	M	3.15
11	Parcheo	m²	564.91
12	Pulimiento de agregados	m²	0.00
13	Huecos	Unidad	15.00
14	Cruce de vía férrea	m²	0.00
15	Ahuellamiento	m²	0.00
16	Desplazamiento	m²	0.00
17	Grieta parabólica	m²	0.00
18	Hinchamiento	m²	0.00
19	Desprendimiento de agregados	m²	8.60

A su vez, al registrar todas las fallas en el segmento de carretera estudiado podemos conocer los porcentajes de las fallas de la vía.

Ilustración 24: Fallas registradas en las unidades de muestra

Fuente: Autor

Se ve reflejado en la ilustración anterior, que el parcheo tiene el 84.06% de influencia total de las fallas. Esto se puede deducir observando que, en todo el tramo de la vía estudiado, desde el sentido de la Av. La Primavera hasta la Av. 10 de Agosto existe un bacheo a lo largo del pavimento, teniendo un ancho variable entre 1.5 metros a 3 metros. En cambio, la exudación es la falla con menor representación ya que se encuentra presente solo en el 0.07% de la vía estudiada. Se debe tomar en cuenta que las fallas no registradas pueden ser que tengan presencia en los demás segmentos de la vía que no se analizó, ya que el método del PCI indico que se deben realizar 14 unidades de muestreo mínimas, y entre estos podrían estar tramos en excelente estado como fallados.

Conforme a lo que dice la norma (ASTM D6433, 2003), las fallas presentes en el intervalo de vía estudiado se describen y son producto de las posibles causas descritas en la siguiente tabla 23.

Tabla 23: Descripción y causas de los tipos de fallas en la vía

FALLA	DESCRIPCIÓN	CAUSA		
Piel de cocodrilo	Serie de fisuras interconectadas que dividen el pavimento en piezas aproximadamente rectangulares menores a 30x30cm	Fatiga de la superficie del pavimento por repeticiones de cargas de trafico		
Exudación	Es una película de material bituminoso sobre la superficie del pavimento, que crea una superficie brillante y reflexiva	Cantidades excesivas de cemento asfaltico o alquitranes en la mezcla, la aplicación excesiva del sello bituminoso		
Abultamiento y hundimiento	Pequeños deslizamientos hacia arriba o abajo en la superficie del pavimento	Pavimentos inestables, grandes depresiones, infiltración y elevación del material		
Grieta de borde	Grietas paralelas ubicadas a 0.3 y 0.6 del borde exterior del pavimento	Cargas de tránsito y debilitamiento por condiciones climáticas de base o subrasante		
Grietas longitudinales y transversales	Paralelas o transversal al eje del pavimento	Contracción de la superficie del concreto asfaltico por cambios de temperatura		
Parcheo	Área reemplazada con material nuevo	Considerados defectos		
Huecos	Depresiones en la superficie de diámetros menores a 90 cm con la forma de tazón	El trafico arranca pequeños pedazos de la superficie del pavimento		
Desprendimiento de agregados	Las peladuras y los desprendimientos son el desgaste en la superficie del pavimento debido a la pérdida del ligante asfaltico	Es causado por ciertos tipos de tráfico, como vehículos de carga liviano y pesado		

4.3 Intervención y Mantenimiento

Conforme a (Ahmed et al., 2021) la rehabilitación es el proceso de mejorar las características estructuras y/o funcionales de un pavimento. Es esencial que la actividad de mantenimiento comience por un análisis y evaluación de la infraestructura vial, y que se establezca un plan de conservación adecuado para prevenir un deterioro no controlado (Ríos Cotazo et al., 2020).

Por lo general, las actividades de mantenimiento de las vías urbanas suelen realizarse sin una adecuada planificación, por lo tanto, es significativo llevar una adecuada gestión en el procedimiento simple, eficiente y confiable para mejorar la condición del pavimento (Aramayo et al., 2019).

Mientras que, las actividades destinadas a mantener las carreteras en buen estado y funcionales mediante el uso de métodos para evaluar el deterioro del pavimento se conocen como preservación. Es por eso que, es fundamental comenzar los trabajos de mantenimiento, principalmente evaluando y analizando el pavimento vial, ya que con base a los datos calculados se puede crear un plan de conservación adecuado para evitar mayores costos y deterioros en el futuro (A. Andrade et al., 2021).

El autor (Ramirez Medina & Valenzuela Robles, 2023) nos dice que es necesario invertir grandes cantidades de capital para garantizar la sostenibilidad del pavimento de las carreteras, así como para pagar costos operativos y mantenimientos futuros. Se han comenzado a emplear una variedad de enfoques para mantener y rehabilitar los pavimentos de acuerdo a las necesidades.

La evaluación superficial del pavimento arroja un PCI del segmento de vía analizado de 40.46, lo que significa que tiene una condición de REGULAR, por consiguiente, necesita procesos considerables de rehabilitación por que se encuentra en un nivel de servicio D, según la tabla 24.

Tabla 24: Nivel de servicio e intervención de propuesta

RAN	NGO	ESCALA DE PCI	NIVEL DE SERVICIO	ACTIVIDAD DE MANTENIMIENTO
85	100	Excelente	A	Mantenimiento rutinario
70	85	Muy Bueno	В	Mantenimiento periódico
55	70	Bueno	С	Procesos leves de rehabilitación
40	55	Regular	D	Procesos considerables de rehabilitación
25	40	Malo	Е	Procesos considerables de rehabilitación
10	25	Muy Malo	F	Construcción
0	10	Fallado	Г	Construccion

Fuente: (Ramirez Medina & Valenzuela Robles, 2023)

El autor (Guzmán Ortiz et al., 2021) establece que una de las principales causas del deterioro de los firmes de las carreteras son las sobrecargas de tránsito repetidas. Por lo que, han optado por el uso del Reciclado de Pavimento Asfáltico (RAP) como metodología de rehabilitación.

Mientras que, el artífice (Baque Solis, 2020) comenta que los factores pasivos relacionados con las características de pavimento y los factores activos, relacionados con el proceso del deterioro del pavimento, juegan un papel importante en su evolución. Asegurando que la afluencia de vehículos, además del sobrepeso vehicular son también causas primordiales del desgaste.

Con estos detalles, se ha sugerido una intervención de mantenimiento para cada falla según su grado de severidad, indicando alternativas para las fallas representativas en nuestro tramo de vía evaluado según la tabla 25.

 Tabla 25: Opciones de reparaciones para fallas representativas

FALLAS	SEVERIDAD	OPCIÓN DE REPARACIÓN	OBSERVACIÓN	IMAGEN REPRESENTATIVA
	L	Sello superficial. Sobre carpeta		39
Piel de Cocodrilo	M	Parcheo parcial o profundo. Sobrecarpeta. Reconstrucción	Realizar previamente una evaluación	
	Н	Parcheo parcial o profundo. Sobrecarpeta. Reconstrucción	estructural	
	L	No se hace nada		Service Control of the Control of th
Abultamiento y	M	Reciclado en frío. Parcheo profundo o parcial	Realizar la intervención	
Hundimiento	Н	Reciclado en frío. Parcheo profundo o parcial. Sobrecarpeta	correspondiente a la falla principal	
	L	Sellado de grietas con ancho mayor a 3 mm	Realizar	
Grieta de Borde	M	Sellado de grietas. Parcheo parcial o profundo	previamente una evaluación estructural	
	Н	Parcheo parcial o profundo		
Grietas	L	Sellado de grietas con ancho mayor a 3 mm	Realizar previamente una	
longitudinales y transversales	M	Sellado de grietas	evaluación estructural	
	Н	Sellado de grietas. Parcheo parcial	252.200	

	L	No se hace nada		
Parcheo	M	Sustitución del parche	Realizar previamente una	
	Н	Sustitución del parche	evaluación estructural	
	L	Parcheo parcial.		
Huecos	M	Parcheo parcial o profundo.	Realizar previamente una	
	Н	Parcheo profundo	evaluación estructural	
	L	Deterioro superficial	Sellado	Mento
Desprendimiento de agregados	M	causado por la repetición de las cargas de transito	Superficial	
	Н			

Fuente: Autor

Como se ubica en la tabla 25, algunas de las fallas representativas son inevitables de prevenir, como las grietas o la piel de cocodrilo; otras, se necesita realizar previamente una evaluación estructural para su mantenimiento. En el capítulo IV del (Ministerio de Obras Públicas, 2002), se encuentran las actividades para los tratamientos del pavimento flexible.

Tabla 26: Técnicas de mantenimiento para las fallas en el pavimento

TRATAMIENTO	DESCRIPCIÓN
Fresado	Consiste en remover el pavimento asfaltico con un cortador giratorio para distribuir la nueva mezcla uniformemente sobre la carretera.
Reciclado de pavimento asfalticos	Para reparar y rejuvenecer las capas asfálticas inferiores, se retiran las capas asfálticas superficiales deterioradas o envejecidas.
Reconstrucción	Se usa cuando se alcanza índices bajos, removiendo completamente o parcialmente el pavimento.
Parcheo en superficie de rodadura asfáltica	Consiste en añadir mezcla asfáltica fría o caliente reparar manualmente las áreas afectadas.
Sellado de arena	Cuando se ha presentado una rotura por extensión y compactación de una capa delgada, la emulsión asfáltica se coloca de inmediato.
Tratamiento superficial	Rejuvenece, impermeabiliza y aumenta la rugosidad del pavimento
Sobrecapa asfáltica	Reduce las deficiencias del pavimento, mejorando su resistencia estructural y el deslizamiento.

Fuente: (Ministerio de Obras Públicas, 2002)

Los estudios preventivos de los pavimentos se centran principalmente en los pavimentos asfalticos, ya que el mantenimiento de los pavimentos debe realizarse con criterios medibles y debidamente establecidos que permitan su tratamiento para mejorar su estado (Castro Chuyo et al., 2021).

4.3.1 Secuela de la Nivelación

Conforme a lo visto en campo, se ha observado que en la avenida Circunvalación Norte en el tramo evaluado, no ha existido ningún fresado o eliminación de las capas anteriores de asfaltos antes de ubicar una nueva. Hemos obtenido como valor critico una diferencia de nivel de -0.013 en el km 0+000 del tramo 3 de la nivelación, lo que ocasiona que el asfalto este por encima del escalón del bordillo. Se revisa a detalle en el anexo 6.

Tabla 27: Resultados de la nivelación entre bordillo y asfalto

PROMEDIO DE L	A DIFERENCIA ALTURA ENTRE BORDILLO Y A	ASFALTO
TRAMO 1	Av. la Primavera hasta la Av. Juan Montalvo	0.061
TRAMO 2	Av. Juan Montalvo hasta la Av. Buenavista	0.057
TRAMO 3	Av. Buenavista hasta la Av. 10 de Agosto	0.046
PRO	OMEDIO DE LOS TRES TRAMOS	0.055

Fuente: Autor

4.3.2 Erradicación de la carpeta asfáltica y aplicación de fresado

Debido al gran número de fallas presentes en el pavimento, el fresado es una buena alternativa para tratar el pavimento. Este sostenimiento removería por completo el pavimento asfáltico y colocar uno nuevo e uniforme. Sin embargo, para determinar si sería útil se ve reflejado en la tabla 25, que estas fallas necesitan una previa evaluación estructural, dado que este tratamiento sería muy costoso.

El fresado se puede realizar en varias capas hasta el espesor requerido para el proyecto, siempre y cuando la superficie quede plana y sin grietas. La eliminación del material bituminoso debe llevarse a cabo de forma manual, o con fresadora para remover la capa de pavimento, de esta suerte suprimiremos todas las fallas; esto se hace a temperatura ambiente con herramientas adecuadas y con un número reducido de vehículos que no impliquen peligro para el tránsito automotor (Ministerio de Obras Públicas, 2002).

CONCLUSIONES

A través de una exhaustiva revisión bibliográfica, se han identificado los métodos utilizados para evaluar las estructuras superficiales del pavimento flexible, permitiéndonos comprender su estado actual y las problemáticas asociadas, las cuales tienen que garantizar un servicio de vialidad adecuado. Por lo tanto, se definió con un indicador el índice de condición del pavimento (PCI), midiendo el área dañada y reconociendo el tipo de deterioro en función a su densidad, para así determinar el índice de cada tramo de vía evaluado mediante una inspección visual, lo que servirá para determinar una decisión adecuada en función al tipo de mantenimiento adecuado para la vía.

Analizando los resultados obtenidos de la evaluación del pavimento de la Avenida Circunvalación Norte desde la Av. La Primavera hasta la Av. 10 de Agosto, nos concedió un valor de índice de condición del pavimento de 40.46, lo cual nos indica que la vía evaluada tiene una condición Regular del pavimento. No obstante, hay que resaltar que solo al haber tomado 14 muestras en el segmento de vía evaluado no se puede considerar que todos los tramos estén en este estado. A pesar de ello, al ser una arteria que funciona como conector con las entradas y salidas de Machala, es una zona susceptible a cargas de transito por tráfico pesado y a los cambios en la temperatura del asfalto, lo que incide en la formación de grietas.

Así mismo, con este método se distinguió que existen 8 tipos de fallas de las 19 unidades analizadas, de las cuales podemos identificar como más importantes a las siguientes: Piel de cocodrilo con un 5.29% de presencia en la vía, abultamiento y hundimiento con un 5.09% del total contabilizado, huecos con un 2.23% y por último la falla con más presencia en todo el segmento de vía evaluado como el parcheo con un 84.06%, con una severidad entre media y alta.

Al tener una vía con un nivel de servicio D, necesitamos procesos considerables de rehabilitación. Las técnicas para la preservación de la carretera cuando presentan piel de cocodrilo con una severidad baja es el sellado superficial y cuando presentan una severidad media o alta es una parcheo parcial o profundo. Para el caso del abultamiento y hundimiento tenemos un reciclado en frío o un parcheo parcial o profundo para una severidad media o alta; para la falla de huecos tenemos un parcheo parcial o profundo dependiendo el tipo de

severidad en el que se encuentre, y para finalizar el parcheo necesita una sustitución del parche. Se considera por parte del autor que la intervención de mantenimiento más adecuado para esta vía es el fresado, aun representando un alto gasto, ya que eso removería todo el pavimento asfaltico y no solo se reubicaría una sobrecapa asfáltica como se ha hecho anteriormente en la vía y creando un plan de mantenimiento adecuado se podría evitar mayores costos y deterioros en el futuro.

RECOMENDACIONES

- Complementar el proceso de evaluación del índice superficial del pavimento, llevando a cabo un enfoque multicriterio, involucrando la participación de profesionales y expertos en el campo de estudio de suelos y servicios viales. Estos especialistas, harán que se lleve a cabo un estudio más exhaustivo y de mayor precisión.
- En la recolección de datos del muestreo del trabajo de campo, para los tramos de vía analizados, es importante llevar todas las herramientas necesarias y adicionalmente portar un manual de fotografías con todas las fallas consideradas del pavimento flexible, el cual nos servirá de guía para un mejor estudio de caso.
- En el proceso de nivelación tener en cuenta los niveles para colocar la capa asfáltica, ya que esto influye en el rendimiento del pavimento a largo plazo; por lo que el fresado en el segmento de vía evaluada es la opción más viable, dado que al ser una vía que a lo largo de los años ha tenido bastantes defectos, abre a la posibilidad de que el daño no sea solo superficial.
- De mi punto de vista, sugiero realizar un nuevo diseño a la vía ya que las solicitaciones de tráfico, ni los sumideros existentes abarcan con lo que necesita la vía, dado que en temporadas de invierno es una carretera que sufre de inundaciones.

REFERENCIAS BIBLIOGRÁFICAS

- Abril Zuleta, S. L., Fernández Gómez, W. D., & Reyes Lizcano, F. A. (2022). Periodo de desempeño de mezclas asfálticas prefabricadas almacenadas para actividades de parcheo en Bogotá D.C. Ciencia e Ingeniería Neogranadina, 32(1), 25–41. https://doi.org/10.18359/RCIN.5294
- Ahmed, F., Thompson, J., Kim, D., Carroll, E., & Huynh, N. (2021). Cost-effectiveness of performing field investigation for pavement rehabilitation design of non-interstate routes. International Journal of Transportation Science and Technology, 10(3), 299–311. https://doi.org/10.1016/J.IJTST.2020.06.001
- Allen, J., Arias Barrantes, E., Vargas Sobrado, C., & Ureña Bermúdez, A. (2020). Factores camión para diseño de pavimentos flexibles en Costa Rica: Análisis histórico en el período 2007-2017. Infraestructura Vial, 22(40), 11–19. https://doi.org/10.15517/IV.V22I40.42859
- Amanah, T. (2023). The Pavement Condition Index Functional Evaluation of Runway Pavement Used Pavement Condition Index (PCI) Method (Case Study: Fatmawati Soekarno Airport Provinsi Bengkulu). Journal of Civil Engineering and Planning (JCEP), 4(1), 14–25. https://doi.org/10.37253/JCEP.V4I1.7660
- Andrade, A., Castillo, G., & Chacater, C. (2021). Efectos de la variabilidad de los datos iniciales en el índice de condición del pavimento y predicción de su deterioro. Revista Digital Novasinergia, 4(1), 102–114. https://doi.org/10.37135/NS.01.07.06
- Andrade, A. I., Castillo, G., & Chacater, C. (2021). Efectos de la variabilidad de los datos iniciales en el índice de condición del pavimento y predicción de su deterioro. Novasinergia, ISSN 2631-2654, 4(1), 102–114. https://doi.org/10.37135/NS.01.07.06
- Aramayo, L., Silva Junior, C. A. P., & Fontenele, H. B. (2019). Visual scale for evaluating urban pavements: Revista Ingeniería de Construcción, 34(1), 45–54. https://doi.org/10.4067/S0718-50732019000100045
- ASTM D6433. (2003). Procedimiento Estándar para la Inspección del Índice de Condición del Pavimento en Caminos y Estacionamientos.

- Baque Solis, B. S. (2020). Evaluación del estado del pavimento flexible mediante el método del PCI de la carretera puerto-aeropuerto (Tramo II), Manta. Provincia de Manabí. Dominio de Las Ciencias, 6(2), 203–228. https://doi.org/10.23857/dc.v6i2.1163
- Castro Chuyo, L. D. K., Muñoz Pérez, S. P., Paucar Aguilar, J. J., & Ramirez Silva, R. V. (2021). Tecnologías empleadas en la evaluación de pavimentos e impacto que han generado. Revista de Investigación Científica y Tecnológica, 2(1), 29–44. https://dialnet.unirioja.es/servlet/articulo?codigo=8090270&info=resumen&idioma=S PA
- Cedeño Vélez, E. V., Zambrano García, J. F., García, Z., & Tejeda Piusseaut, E. (2023). REVISIÓN DE DISEÑOS DE PAVIMENTOS FLEXIBLES MEDIANTE EL MÉTODO EMPÍRICO MECANICISTA DE LA AASHTO 2004. Revista Ciencia y Construcción, 4(3), 57–67. https://rcc.cujae.edu.cu/index.php/rcc/article/view/210
- Cruz Toribio, J. O., & Gutierrez Lazares, J. W. (2019). Evaluación Superficial de Vías Urbanas empleando Vehículo Aéreo No Tripulado (VANT). Métodos y Materiales, 8, 23–32. https://doi.org/10.15517/MYM.V8I1.34113
- De La Cruz Vega, S. A., Ibañez Ccoapaza, C. E., & Coaquira Cueva, D. Y. (2022). Determinación de índice de serviciabilidad y capacidad resistente. Caso práctico: pavimentos en Azángaro, Puno, Perú. Infraestructura Vial, 24(43), 94–102. https://doi.org/10.15517/IV.V24I43.48563
- Deng, Y., Luo, X., Zhang, Y., & Lytton, R. L. (2021). Evaluation of flexible pavement deterioration conditions using deflection profiles under moving loads. Transportation Geotechnics, 26, 100434. https://doi.org/10.1016/J.TRGEO.2020.100434
- Fang, Z., Qi, J., Fan, L., Huang, J., Jin, Y., & Yang, T. (2022). A topography-aware approach to the automatic generation of urban road networks. International Journal of Geographical Information Science, 36(10), 2035–2059. https://doi.org/10.1080/13658816.2022.2072849
- Flores De Valgas Giler, S. B., & Mogrovejo Carrasco, D. E. (2023). EVALUACIÓN FUNCIONAL DEL PAVIMENTO FLEXIBLE EN LA RED VIAL RURAL DE PORTOVIEJO, ECUADOR. REVISTA CIENTÍFICA MULTIDISCIPLINARIA

- ARBITRADA YACHASUN , 7(13), 212–235. https://editorialibkn.com/index.php/Yachasun/article/view/404/681
- Freitas de Almeida, B. A., Krisnamurti, K., Hasanuddin, A., & Ratnaningsih, A. (2022). EVALUATION OF FLEXIBLE PAVEMENT DAMAGE USING THE PCI (PAVEMENT CONDITION INDEX) METHOD BASED ON CORE DRILL DATA. CASE STUDY: ON THE MANDARIN ROAD TO THE PRESIDENT NICOLAO LOBATO ROUNDABOUT AND THE BEBONUK ROAD IN DILI CITY, TIMOR-LESTE. Rekayasa Sipil, 16(3), 222–229. https://doi.org/10.21776/UB.REKAYASASIPIL.2022.016.03.10
- García Depestre, R. A., Dávila Medina, L., & Alba Moya, J. E. (2021). Indicaciones sobre la evaluación de la infraestructura de carreteras para Cuba. Revista de Arquitectura e Ingeniería, 3, 1–11. https://www.redalyc.org/articulo.oa?id=193969257006
- González Fernández, H., Ruiz Caballero, P., & Guerrero Valverde, D. (2019). Propuesta de metodología para la evaluación de pavimentos mediante el Índice de Condición del Pavimento (PCI). Ciencia En Su PC, 1(4), 58–71. https://www.redalyc.org/articulo.oa?id=181358738015
- Guzmán Ortiz, D. V., Hernández Zaragoza, J. B., López Lara, T., Horta Rangel, J. M., & Giraldo Posada, D. A. (2021). Uso de agregado de pavimento asfáltico reciclado para un pavimento rígido. Ingeniería Investigación y Tecnología, 22(1), 1–11. https://doi.org/10.22201/FI.25940732E.2021.22.1.005
- Hoang, N. D. (2018). Classification of Asphalt Pavement Cracks Using Laplacian Pyramid-Based Image Processing and a Hybrid Computational Approach. Computational Intelligence and Neuroscience, 2018. https://doi.org/10.1155/2018/1312787
- INEC. (2010). Fascículo Provincial El Oro.
- Justavino, M., Tiemann, M., & Morales, A. (2023). Evaluación y clasificación de vías en el corregimiento de David Sur, aplicando el método PCI. Revista de Iniciación Científica, 9(2), 40–48. https://doi.org/10.33412/REV-RIC.V9.2.3840

- Khahro, S. H. (2022). Defects in Flexible Pavements: A Relationship Assessment of the Defects of a Low-Cost Pavement Management System. Sustainability, 14(24), 16475. https://doi.org/10.3390/SU142416475
- Mamani Gonzalo, G., De La Cruz Vega, S. A., Vega Neyra, C. S., Yllescas Rodríguez, P. M., & Rea Olivares, W. M. (2023). Estabilización de la subrasante con ceniza de quinua y cal en la Carretera Lago Sagrado, Puno, Perú. Infraestructura Vial, 25(44), 85–92. https://doi.org/10.15517/IV.V25I44.53569
- Ministerio de Obras Públicas. (2002). Especificaciones generales para la construcción de caminos y puentes.
- Ndume, V., Mlavi, E., & Mwaipungu, R. (2020). Development of Road Pavement Condition Index Using Combined Parameters. Journal of Civil Engineering Research, 10(3), 53–62. https://doi.org/10.5923/J.JCE.20201003.01
- Oblitas Gastelo, B. E., Medina Cardozo, I. I., & Paredes Asalde, C. R. (2021). International Evenness Index And Pavement Condition Index For Defining Pavement Serviceability Levels. ITECKNE, 18(2), 170–175. https://doi.org/10.15332/ITECKNE.V18I2.2616
- Pérez Cruz, G. H. (2022). ANÁLISIS DEL PAVIMENTO DE LA AVENIDA CIRCUNVALACIÓN NORTE DESDE LA AVENIDA LAS PALMERAS HASTA LA VÍA LA PRIMAVERA EN LA CIUDAD DE MACHALA [Universidad Técnica de Machala]. http://repositorio.utmachala.edu.ec/bitstream/48000/21231/1/PEREZ%20CRUZ%2c% 20GEORGE%20HENRY.pdf
- Pinatt, J. M., Chicati, M. L., Ildefonso, J. S., & Grégio D.arce Filetti, C. R. (2020). Evaluation of pavement condition index by different methods: Case study of Maringá, Brazil. Transportation Research Interdisciplinary Perspectives, 4, 100100. https://doi.org/10.1016/J.TRIP.2020.100100
- Plan de Desarrollo Vial Integral de La Provincia de El Oro, Consorcio de Gobiernos Autónomos Provinciales del Ecuador (CONGOPE) (2019).
- Plan de Desarrollo y Ordenamiento Territorial (2019).

- Quinto Prado, C. A., & Mallqui Durand, J. T. (2023). Evaluación superficial del pavimento asfáltico apoyada por el método PCI en pistas de aterrizaje de aeropuertos. Universidad, Ciencia y Tecnología, 27(118), 87–98. https://doi.org/10.47460/UCT.V27I118.690
- Ramirez Medina, D. A., & Valenzuela Robles, L. S. (2023). Plan de mantenimiento periódico del pavimento en el tramo Paradero Las Retamas Puente Los Ángeles. Infraestructura Vial, 25(44), 1–13. https://doi.org/10.15517/IV.V25I44.51309
- Rifai, M., Setyawan, A., Handayani, F. S., & Arun, A. D. (2023). Evaluation of functional and structural conditions on flexible pavements using pavement condition index (PCI) and international roughness index (IRI) methods. E3S Web of Conferences, 429, 05011. https://doi.org/10.1051/E3SCONF/202342905011
- Ríos Cotazo, N. X., Bacca Cortés, B., Caicedo Bravo, E., & Orobio Quiñónez, A. (2020).

 Revisión de métodos para la clasificación de fallas superficiales en pavimentos flexibles. Ciencia e Ingeniería Neogranadina, 30(2), 109–127. https://doi.org/https://doi.org/10.18359/rcin.4385
- Saba, A. K., & Khawla H. H., S. (2021). Pavement condition index (PCI) for some highways collector selected in Najaf city implemented with PAVER software. Journal of Physics: Conference Series, 1895(1), 012021. https://doi.org/10.1088/1742-6596/1895/1/012021
- Sabaruddin, & Deni, A. (2020). Application of pavement condition index (PCI) on the assessment of the Kalumata highway section of the City of South Ternate. IOP Conference Series: Earth and Environmental Science, 419(1), 1–5. https://doi.org/10.1088/1755-1315/419/1/012016
- Salviatto, V. H., Barbosa Fontanele, H., Salviatto, V. H., & Barbosa Fontanele, H. (2021). Index for assessing the condition of flexible urban pavements based on a constructivist multicriteria analysis. Revista Ingeniería de Construcción, 36(2), 107–116. https://doi.org/10.4067/S0718-50732021000200107
- Sánchez Morales, M. C., Pavón Marrero, D. M., & Tejeda Piusseaut, E. (2020). Propuesta de espesores mínimos de superficie y coeficientes de equivalencia de espesores para el

- diseño de pavimentos flexibles. Revista de Arquitectura e Ingeniería, 14(1), 1–10. https://www.redalyc.org/articulo.oa?id=193962633005
- Tello Cifuentes, L., Aguirre Sánchez, M., Díaz Paz, J. P., & Hernández, F. (2021). Evaluación de daños en pavimento flexible usando fotogrametría terrestre y redes neuronales. TecnoLógicas, 24(50), 59–71. https://doi.org/10.22430/22565337.1686
- Torres Torres, L. C., & Muñoz Pérez, S. P. (2023). Assessment of a flexible pavement applying the Pavement Condition Index PCI method. ITECKNE, 20(1). https://doi.org/10.15332/ITECKNE.V20I1.2919
- Zambrano Mesa, I., Tejeda Piusseaut, E., & Aaenlle, A. A. (2020). Materiales granulares mejorados con emulsión asfáltica catiónica para subbases de pavimentos. Infraestructura Vial, 22(39), 29–42. https://doi.org/10.15517/IV.V22I39.41574
- Zapata Rogel, A. F., Luna Guamán, M. E., Sánchez Mendieta, C., & Medina Sánchez, Y. P. (2023). EVALUACIÓN DE LA ESTRUCTURA DE PAVIMENTO EN CARRETERAS DE MONTAÑA. Revista Ciencia y Construcción, 4(4), 56–66. https://rcc.cujae.edu.cu/index.php/rcc/article/view/208

ANEXOS

Anexo 1: Esquema de muestreo para la evaluación PCI

ESC	QUEMA DEL PAVIMI	ENTO PARA MUESTI	REO					
TRAMO	01 - M 01	TRAMO	02 - M 02					
INICIO	FIN	INICIO	FIN					
KM 0+000	KM 0+018	KM 0+072	KM 0+090					
TRAMO	03 - M 03	TRAMO	04 - M 04					
INICIO	FIN	INICIO	FIN					
KM 0+144	KM 0+162	KM 0+216	KM 0+234					
TRAMO	05 - M 05	TRAMO	06 - M 06					
INICIO	FIN	INICIO	FIN					
KM 0+288	KM 0+306	KM 0+360	KM 0+378					
TRAMO	07 - M 07	TRAMO 08 - M 08						
INICIO	FIN	INICIO	FIN					
KM 0+432	KM 0+450	KM 0+504	KM 0+522					
TRAMO	09 - M 09	TRAMO	10 - M 10					
INICIO	FIN	INICIO	FIN					
KM 0+576	KM 0+594	KM 0+648	KM 0+666					
TRAMO	11 - M 11	TRAMO	12 - M 12					
INICIO	FIN	INICIO	FIN					
KM 0+720	KM 0+738	KM 0+792	KM 0+810					
TRAMO	13 - M 13	TRAMO	14 - M 14					
INICIO	FIN	INICIO	FIN					
KM 0+864	KM 0+882	KM 0+936	KM 0+954					

Anexo 2: Resultados de los cálculos del PCI en el tramo de vía designado

		000	•	AIXIX	LIKA	DE INGENIE	KIA CIVI	L		***	MALA - EL ORO		
			IN			DICION DEL PAVIME: NSPECCIÓN Nº02 (MÉT		E					
NOMBRE DE LA	vía		ALACIÓN NORT VERA HASTA L			PROVINCIA	EL ORO			FECHA	06 de Mayo del	2024	
UNIDAD MUEST	READA	M - 02				PROGRESIVA	KM 0+072.0	00		AL	KM 0+	090.00	
REA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao	Castillo Mo	ncada				
						TIPO DE FALLAS							
OBSER	VACIONES	1 Piel de cocod	lrilo	PC	m ²	11 Parcheo		PA	m²		Ubicación		
	2 Exudacion					12 Pulimiento de agreg	ţ-	PU	m^2			31	
		3 Agrietamient		BLO	m^2	13 Huecos		HUE	unid	1			
		4 Abultamiento		ABH	m ²	14 Cruce de vía ferrea		CVF	m^2	O Vigoria	nemoral Pomera	-	
		5 Corrugación		COR	m^2	15 Ahuellamiento		AHU	m^2	9 1	many thought the	40	
	6 Depresión					16 Desplazamiento		DES	m^2		Par Bay	STATE OF THE PERSON	
		7 Grieta de bor		GB	m	17 Grieta parabolica		GP	m^2	a f 11	1	LIM	
		8 Reflexión de	juntas	CR	m	18 Hinchamiento		HN	m^2	7 7 11	The second	ALC: N	
	9 Desnivel				m	19 Desprendimiento de	e agregados	DAG	m²			5 11 6	
10 Grietas long. Y transv.				GLT	m	Tyr Despression	ug-tgaacs			市會 排圖學		many Marine	
FALLA	SEVERIDAD	UNIDAD	LARGO	ANC		PROFUNDIDAD	CANTIDAD		ALES	TOTAL	DENSIDAD	VALOR DEDUCID	
PC	L	m ²	1.60	0.0	_			0.08		0.18	0.06	3.10	
PC	L	m²	2.50	0.0				0.10					
PA	H	m²	0.70	0.5				0.35		45.35	15.00	57.70	
PA	H	m ²	18.00	2.5				5.00		20.00	661	53.75	
ABH	Н	m ²	8.00	2.3	U	-	4	0.00		20.00	6.61	33.73	
lámoro do volo	res deducidos (q)	<u> </u>		3									
	más alto (HVDi)	-2		57.		1							
	o de valores deduc	idos (mi)		4.8		1							
					_	VALOR CORREGIDO	DEDUCIDO						
N°				ALORES						VDT	q	VDC	
1	57.70	53.75	3.10					T		114.55	3	69.00	
2	57.70	53.75	2.00							113.45	2	77.70	
3	57.70	2.00	2.00							61.70	1	62.00	
		•					M	ÁXIMO V	DC			77.7	
						ÍNDICE DE COND	ICIÓN DE PAVE	MENTO (PC	т	PCI= 100-(MÁXIN			
						ÍNDICE DE CONDICIÓN DE PAVIMENTO (PCI)				PCI= 22.3			
						CONDICIÓN DEL	ESTADO DEL I	PAVIMENTO	0	MUY MALO			

	1		(CARRI	ERA	DE INGENIE	RIA CIVII	L		L. Bar	HALA - EL ONO	
			п			DICION DEL PAVIME ISPECCIÓN Nº03 (MÉT						
NOMBRE DE LA	VÍA		ALACIÓN NORT VERA HASTA L			PROVINCIA	EL ORO			FECHA	06 de Mayo del 2	2024
UNIDAD MUEST	TREADA	M - 03		PROGRESIVA			KM 0+144.00)		AL	KM 0	+162.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao C	astillo Mo	ncada			
						TIPO DE FALLAS						
OBSERV	ACIONES	1 Piel de cocodi	rilo	PC	m²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m²	12 Pulimiento de agreg	:	PU	m²	CASH S		ALCOHOLD THE REAL PROPERTY.
		3 Agrietamiento	en bloque	BLO	m^2	13 Huecos		HUE	unic	4	Unaday U	1 100
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m²	THE I	ATTENDED	
		5 Corrugación		COR	m²	15 Ahuellamiento		AHU	m^2	In Charles		4
		6 Depresión		DEP	m²	16 Desplazamiento		DES	m²	1 E E T		A SALA I
		7 Grieta de boro	de	GB	m	17 Grieta parabolica		GP	m ²	11 5		
		8 Reflexión de j	juntas	CR.	m	18 Hinchamiento		HN	m²	THE PARTY		
		9 Desnivel		DN	m		IO D					
		10 Grietas long	Y transv.	GLT	m	19 Desprendimiento de	agregados	DAG	m^2	E STEE		
FALLA	SEVERIDAD					PROFUNDIDAD	CANTIDADES		LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
PC	L	m²	3.00	0.04				12		0.12	0.04	2.40
PA	M	m²	18.00	2.50)		45.00			45.00	14.88	33.60
HUE	M	unid.	2.00				2.00			2.00	0.66	17.00
GB	H	m	1.15				1.	15		1.15	0.38	7.40
Número de valo	res deducidos (q) :	>2		4								
	más alto (HVDi)			33.6	0							
Numero máximo	de valores deduc	idos (mi)		7.1								
						VALOR CORREGIDO	DEDUCIDO					
N°			1	VALORES	DEDU	ICIDOS				VDT	q	VDC
1	33.60	17.00	7.40	2.40						60.40	4	33.24
2	33.60	17.00	7.40	2.00)					60.00	3	37.70
3	33.60	17.00	2.00	2.00						54.60	2	42.10
4	33.60	2.00	2.00	2.00)					39.60	1	39.40
							MÅ	XIMO VI	C			42.1
						ÍNDICE DE CONDICIÓN DE PAVIMENTO (PCI)				PCI=		IMO VDC)
						INDICE DE CONDICION DE PAVIMENTO (PCI)				PCI= 57.9		
				CONDICIÓN DEL ESTADO DEL PAVIMENTO BUENO								

	The second second		(CARRE	ERA	DE INGENIE	RIA CIV	IL		W- and	MALA - EL ONO	
			п			DICION DEL PAVIME ISPECCIÓN Nº04 (MÉ		E				
NOMBRE DE LA	. VÍA		ALACIÓN NORT VERA HASTA L			PROVINCIA	EL ORO			FECHA	06 de Mayo del 2024	
UNIDAD MUEST	TREADA	M - 04				PROGRESIVA	KM 0+216.	00		AL	KM	+234.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao	Castillo Mor	ncada			
						TIPO DE FALLAS						
OBSERV	VACIONES	1 Piel de cocod	rilo	PC	m²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agreg	ţ.	PU	m^2	of the state of	PARTITION	
		3 Agrietamiento	en bloque	BLO	m^2	13 Huecos		HUE	unid		September 1	LEGIC DE LA
		4 Abultamiento	y hundimiento	ABH	m²	14 Cruce de vía ferrea		CVF	m^2			MALES LA
l		5 Corrugación		COR	m²	15 Ahuellamiento		AHU	m^2	厂饰竹川	相對對於	The second
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2		W 10 10	
		7 Grieta de bor	de	GB	m	17 Grieta parabolica		GP	m^2	Carl March	MALL BOOK	MITTER TO THE
		8 Reflexión de	juntas	CR	m	18 Hinchamiento HN m ²					打炸弹车	開起 法押证此
		9 Desnivel		DN	m	19 Desprendimiento de		DAG	m²	州		
	10 Grietas long. Y transv.					19 Desprendimiento de	agregados	DAG	m			WELL BOTTOM
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCH	Ю	PROFUNDIDAD	CANTIDADI	ES PARCIA	LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
PC	L	m²	3.00	0.05				0.15				
PC	L	m²	2.50	0.05			0.13			0.31	0.10	3.10
PC	L	m²	0.60	0.05			0.03					
PA	H	m²	18.00	2.50)		45.00			45.00	14.88	56.60
ABH	H	m²	10.00	0.80)			8.00		8.00	2.65	43.00
GB	H	m	3.00					3.00		3.00	0.99	9.85
Número de valo	res deducidos (q) :	>2		4								
	más alto (HVDi)			56.60]						
Numero máxim	o de valores deduc	idos (mi)		4.99								
						VALOR CORREGIDO	DEDUCIDO					
Nº				ALORES		CIDOS				VDT	q	VDC
1	56.60	43.00	9.85	3.10						112.55	4	63.50
2	56.60	43.00	9.85	2.00						111.45	3	68.20
3	56.60	43.00	2.00	2.00						103.60	2	72.00
4	56.60	2.00	2.00	2.00)					62.60	1	62.20
						MÁXIMO VDC					100.000	72
						ÍNDICE DE CONDICIÓN DE PAVIMENTO (PCI)					100-(MAXIMO VDC)	
										PCI= 28		28
						CONDICIÓN DEL ESTADO DEL PAVIMENTO MALO						

			C	CARRI	ERA	DE INGENIE	RIA CIVI	L		N. O.	MALA - EL ORO	
			IN			DICION DEL PAVIME (SPECCIÓN N°05 (MÉ		Е				
NOMBRE DE L	A VÍA	AV. CIRCUNVA AV. LA PRIMA AGOSTO	ALACIÓN NOR VERA HASTA I			PROVINCIA	EL ORO			FECHA	FECHA 06 de Mayo del 2	
UNIDAD MUEST	TREADA	M - 05				PROGRESIVA	KM 0+288.0	0		AL	KM 0	+306.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao	Castillo Mo	ncada			
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocod	rilo	PC	m²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m²	12 Pulimiento de agreg	ļ.	PU	m²	AND DESCRIPTION OF THE PERSON NAMED IN		
l		3 Agrietamiento	o en bloque	BLO	m^2	13 Huecos		HUE	unid	The Property		一种工作
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m²	THE PARTY NAMED IN	ille little ha	
		5 Corrugación		COR	m^2	15 Ahuellamiento		AHU	m^2	CALCULATION.	1111	
		6 Depresión		DEP	m²	16 Desplazamiento		DES	m^2		100	
		7 Grieta de bor	de	GB	m	17 Grieta parabolica		GP	m²	AL THURST	MALL	L AUTHE
		8 Reflexión de	juntas	CR	m	18 Hinchamiento		HN	m^2	7 4 30		40-11日本11日
		9 Desnivel		DN	m	l					"是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	
l		10 Grietas long	Y transv.	GLT	m	19 Desprendimiento de	e agregados	DAG	m^2			The state of the s
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCI	Ю	PROFUNDIDAD	CANTIDADE	S PARCIA	LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
HUE	M	unid.	1.00				1	.00				
HUE	M	unid.	1.00				1	.00		2.00	0.66	17.00
PC	M	m²	4.00	0.70)		2	.80		2.94	0.97	20.00
PC	M	m²	2.70	0.05	,		0	.14		2.94	0.97	20.00
PA	M	m²	18.00	2.50)		45	5.00		45.00	14.88	34.30
Número de valo	ores deducidos (g)	>2		3		-					<u> </u>	
	más alto (HVDi)	-		34.3	0	1						
	o de valores dedu	ridos (mi)		7.03		1						
		- ()		CALCUI	O DE	VALOR CORREGIDO	D DEDUCIDO					
N°			V	ALORES						VDT	q	VDC
1	34.30	20.00	17.00				1			71.30	3	45.28
2	34.30	20.00	2.00							56.30	2	41.41
3	34.30	2.00	2.00							38.30	1	38.30
								PATE (OF P	00			45.28
								AXIMO VI		PCI=	100.0563	
						ÍNDICE DE CONDICIÓN DE PAVIMENTO (PCI)				PCI=	1 /	
						CONDICIÓN DEL ESTADO DEL PAVIMENTO REGULAR						

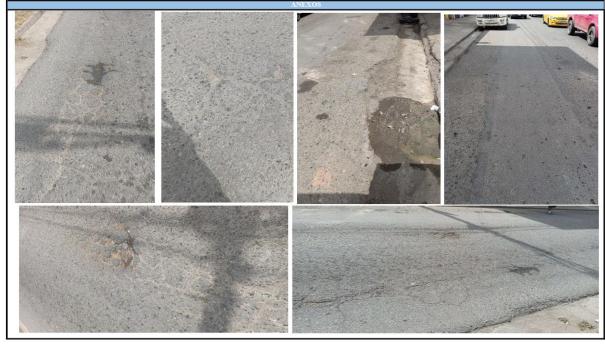
	Co.		C	CARRI	ERA	DE INGENIE	RIA CIVII	L		·MAC	MALA - EL ORO	
			IN			DICION DEL PAVIME ISPECCIÓN N°06 (MÉ		Ĭ.				
NOMBRE DE L	A VÍA	AV. CIRCUNVA AV. LA PRIMA AGOSTO				PROVINCIA	EL ORO			FECHA	FECHA 06 de Mayo del 2024	
UNIDAD MUES	TREADA	M - 06				PROGRESIVA	KM 0+360.00)		AL	KM 0	+378.00
ÁREA DE LA M	UESTRA (m²)	302.40		EVALUADOR Alexander Joao Castillo Moncada								
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocod	rilo	PC	m²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agreg		PU	m^2		ALM TO D	CHAINNA.
		3 Agrietamiento		BLO	m^2	13 Huecos		HUE	unid	F 10-15-	100	Marie A. S.
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m^2	11-11	原本国籍 。原	
		5 Corrugación		COR	m^2	15 Ahuellamiento		AHU	m^2	STATE OF THE PARTY		-
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2	4 1.61		
		7 Grieta de bor		GB	m	17 Grieta parabolica		GP HN	m^2	American Inches		
		8 Reflexión de	juntas	CR	m	18 Hinchamiento	m²		100	The state of the s		
		9 Desnivel		DN	m	19 Desprendimiento de agregados DAG m²			m²	1	A THE RESERVE	de L
		10 Grietas long	Y transv.	GLT	m	17. Desprending to	. nga eguado	20			· college of	RA A
FALLA	SEVERIDAD	UNIDAD	LARGO	ANC	но	PROFUNDIDAD	CANTIDADE		ALES	TOTAL	DENSIDAD	VALOR DEDUCIDO
HUE	L	unid.	1.00					00		2.00	0.66	17.00
HUE	L	unid.	1.00			1.00				2.00	5.55	11.00
PC	L	m²	2.30	0.0			0.12			0.26	0.08	2.80
PC	L	m²	2.80	0.0				14				
PA	H	m²	18.00	2.0				.00		36.00	11.90	54.95
DAG	M	m²	1.00	0.4	0		0.	40		0.40	0.13	4.79
N74												
	ores deducidos (q) más alto (HVDi)	> <u>1</u>		54.9		-						
	mas aito (H v Di) io de valores dedu	alder (mi)		5.1	_	1						
rumero maxin	o de valores dedu	ciuos (mi)				VALOR CORREGIDO	DEDICIDO					
N°			7	ALORES			DEDUCIDO			VDT	q	VDC
1	54.95	17.00	4.79	2.8		1				79.54	4	44.72
2	54.95	17.00	4.79	2.0						78.74	3	49.74
3	54.95	17.00	2.00	2.0						75.95	2	55.17
4	54.95	2.00	2.00	2.0	0					60.95	1	60.00
	•					MAXIMO VDC						60
						ÍNDICE DE COMPI	T.	PCI=	100-(MÅ)	IMO VDC)		
						ÍNDICE DE CONDICIÓN DE PAVIMENTO (PCI)				PCI= 40		40
						CONDICIÓN DEL	ESTADO DEL PA	CONDICIÓN DEL ESTADO DEL PAVIMENTO REGUL:				

			(CARRE	RA	DE INGENIE	RIA CIV	IL		S. Mark	MALA - SLOTO	
			IN			DICION DEL PAVIME SSPECCIÓN №07 (MÉ		LE				
NOMBRE DE LA	. vía		ALACIÓN NORT VERA HASTA I			PROVINCIA	EL ORO			FECHA	06 de Mayo del	2024
UNIDAD MUEST	TREADA	M - 07				PROGRESIVA	KM 0+432	2.00		AL	KM	0+450.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joa	o Castillo Mo	ncada			
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocod	lrilo	PC	m ²	11 Parcheo		PA	m ²		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agre	g.	PU	m ²	171 (13)	THE PLANE	
		3 Agrietamient		BLC	m ²	13 Huecos		HUE	unid	1	44	LL L
		4 Abultamiento	y hundimiento	ABE	m ²	14 Cruce de vía ferrea		CVF	m ²	V Principal	THE RESERVE	distant, and
		5 Corrugación		COF	m ²	15 Ahuellamiento		AHU	m ²	-	- 0000 00	
		6 Depresión 7 Grieta de bor		DEP	m ²	16 Desplazamiento		DES	m ²	61 MARC	MATERIAL STATES	1 - 1
		8 Reflexión de		GB CR	m	17 Grieta parabolica 18 Hinchamiento		GP HN	m ²	1111		Town by
		9 Desnivel	juntas	DN	m	18.º Hinchamiento		IIN	m²	COLUMN TO A STATE OF THE PARTY	1	
		10 Grietas lons	Y transv	GLT	m	19 Desprendimiento d	e agregados DAG m			THE RES		WHEN THE
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCH		PROFUNDIDAD	CANTIDAL	DES PARCIA	LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
DAG	Н	m²	1.40	0.60				0.84				
DAG	Н	m²	1.00	0.20				0.20		1.28	0.42	12.10
DAG	Н	m²	0.80	0.30			0.24		1			
PA	Н	m²	18.00	1.25			22.50					
PA	H	m ²	5.00	0.70			3.50			71.00	23.48	69.45
PA	H	m ²	18.00	2.50				45.00				
PC	Н	m²	9.00	0.20				1.80		5.88	1.94	39.44
PC	Н	m²	10.20	0.40				4.08 3.00				
HU	M	unid	3.00					3.00		3.00	0.99	51.31
Námono do l-	nor doducidos (-) :			4								
	res deducidos (q) : más alto (HVDi)			69.45		1						
	o de valores deduc	idos (mi)		3.81	_	1						
		and (may		0.00	O DE	VALOR CORREGIDO	D DEDUCIDO					
N°			١	ALORES						VDT	q	VDC
1	69.45	51.31	39.44	12.10						172.30	4	90.69
2	69.45	51.31	39.44	2.00						162.20	3	93.66
3	69.45	51.31	2.00	2.00						124.76	2	83.38
4	69.45	2.00	2.00	2.00						75.45	1	75.40
								MÁXIMO VI				
									93.66			
						ÍNDICE DE COND	PCI=					
								PCI= 6.34				
						CONDICIÓN DEL ESTADO DEL PAVIMENTO FALLADO						

						DE INGENIE				An. TA	MALA - EL ORO	
			II			DICION DEL PAVIME NSPECCIÓN Nº08 (MÉT		3				
NOMBRE DE LA	. VÍA		ALACIÓN NORT VERA HASTA L			PROVINCIA	EL ORO			FECHA	06 de Mayo del 2	2024
UNIDAD MUEST	READA	M - 08				PROGRESIVA	KM 0+504.00	0		AL	KM 0+	+522.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao (Castillo Moi	ncada			
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocodi	rilo	PC	m²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m^2	Pulimiento de agreg.		PU	m^2	T-L-S		
		3 Agrietamiento	en bloque	BLO	m^2	13 Huecos		HUE	unid	阿丁		
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m^2	a Salas Tre	Married Married	ALC: NAME OF STREET
		5 Conugación		COR	m^2	15 Ahuellamiento		AHU	m^2			
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2	0 0 00		
l		7 Grieta de boro	de	GB	m	17 Grieta parabolica		GP	m^2	04/3/11/04		101 1
l		8 Reflexión de j	juntas	CR	m	18 Hinchamiento		HN	m^2		工學有別	
		9 Desnivel		DN	m	19 Desprendimiento de		DAG	m²	La Life		
		10 Grietas long.	Y transv.	GLT	m	19 Desprenamiento de	agregados	DAG	ш		- A-	The Late of
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCI	но	PROFUNDIDAD	CANTIDADE	S PARCIA	LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
HUE	H	unid.	2.00				2	.00		4.00	1.32	56.36
HUE	H	unid.	2.00				2	.00		1 4.00	1.52	36.36
PC	M	m²	1.90	0.50	0		0	.95		0.95	0.31	11.79
PA	M	m²	18.00	2.00	0		36	5.00		36.00	11.90	33.31
GLT	L	m	0.90				0	.90		0.90	0.30	0.10
Número de valo	res deducidos (q) >	>2		3								-
Valor deducido	más alto (HVDi)			56.3	36]						
Numero máxim	o de valores deduc	idos (mi)		5.0	-	1						
						E VALOR CORREGIDO	DEDUCIDO					
N°			7	VALORES	DEDU	UCIDOS				VDT	q	VDC
1	56.36	33.31	11.79							101.46	3	63.73
2	56.36	33.31	2.00							91.67	2	65.17
3	56.36	2.00	2.00							60.36	1	60.00
							M	AXIMO VI	DC			65.169
						ÍNDICE DE CONDI	ICIÓN DE PAVIV	TENTO (PC	n.	PCI=	_	(IMO VDC)
									,	PCI=	34	.831
						CONDICIÓN DEL	. ESTADO DEL P	AVIMENTO	0		MALO	

			IN	NDICE DE	CON	DICION DEL PAVIME	NTO FLEXIBLE				TALA - SU	
SOMBRE DE LA	vía		ALACIÓN NORT VERA HASTA L			PROVINCIA	EL ORO			FECHA	06 de Mayo del	2024
NIDAD MUEST	READA	M - 09				PROGRESIVA	KM 0+576.00)		AL	KM 0	+594.00
REA DE LA MI		302.40				EVALUADOR	Alexander Joao C		ncada		-	
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocodi	rilo	PC	m²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m²	12 Pulimiento de agreg	-	PU	m²	1 Let 42 1	Man Tevel	To be and
		3 Agrietamiento	en bloque	BLO	m^2	13 Huecos		HUE	unid	M. North Print		Aller Street
		4 Abultamiento	y hundimiento	ABH	m ²	14 Cruce de vía ferrea		CVF	m^2	Access to the second	STATE OF THE PERSON NAMED IN	-
		5 Corrugación		COR	m²	15 Ahuellamiento		AHU	m^2		THE PARTY NAMED IN	- SE - 17
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2	400 F		
		7 Grieta de boro	de	GB	m	17 Grieta parabolica		GP	m^2		+, P	10 T
		8 Reflexión de	juntas	CR	m	18 Hinchamiento		HN	m^2	AL THE		10 3 7
		9 Desnivel		DN	m	10 D I'		Dic	2	100		
		10 Grietas long	Y transv.	GLT	m	19 Desprendimiento de	agregados	DAG	m²		L THE	Sand in the
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCI	но	PROFUNDIDAD	CANTIDADE	S PARCIA	LES	TOTAL	DENSIDAD	VALOR DEDUCID
PA	Н	m²	18.00	1.80	0		32	.40		36.80	12.17	55.37
PA	H	m²	4.00	1.10	0		4.	.40		36.80	12.17	35.37
PC	M	m²	0.30	0.30	0		0.	.09		0.99	0.33	12.17
PC	M	m²	1.50	0.60	0		0.	90		0.99	0.33	12.17
GB	H	m	1.33				1.	.33		1.33	0.44	8.02
DAG	M	m²	0.25	0.25	5		0.	.06		0.06	0.02	1.20
ABH	H	m²	3.50	1.00	0		3.	.50		3.50	1.16	35.48
	res deducidos (q)	>2		4								
	más alto (HVDi)			55.3		1						
umero máxim	o de valores deduc	idos (mi)		5.1								
						E VALOR CORREGIDO) DEDUCIDO					
N°				ALORES	_	UCIDOS				VDT	q	VDC
1	55.37	35.48	12.17	8.02						111.04	4	62.62
2	55.37	35.48	12.17	2.00	_					105.02	3	65.51
3	55.37	35.48	2.00	2.00						94.85	2	67.40
4	55.37	2.00	2.00	2.00	0					61.37	1	61.37
							MA	XIMO VI	ж		400 (T-1-	67.4
						ÍNDICE DE CONDI	ICIÓN DE PAVIM	ENTO (PC	I)	PCI=	_	(IMO VDC)
										PCI=	3	2.6
						CONDICIÓN DEL	ESTADO DEL PA	AVIMENTO)		MALO	

			(CARRI	ERA	DE INGENIE	RIA CIVIL			· BAC	MALA - EL ONO	
			IN			DICION DEL PAVIME ASPECCIÓN Nº10 (MÉ						
NOMBRE DE L	VÍA		ALACIÓN NORT VERA HASTA I			PROVINCIA	EL ORO			FECHA	06 de Mayo del	2024
UNIDAD MUEST	TREADA	M - 10				PROGRESIVA	KM 0+648.00			AL	KM 0	+666.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao Cas	stillo Mon	cada			
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocod	rilo	PC	m²	11 Parcheo		PA	m ²		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agreg	ļ.	PU	m^2	Mad Upper		State of the
		3 Agrietamiente	o en bloque	BLO	m^2	13 Huecos		HUE	unid	was in	THE REAL PROPERTY.	
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m^2	The desired		CONTRACTOR
		 Corrugación 		COR	m^2	15 Ahuellamiento		AHU	m^2		The state of	THE R. P.
l		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2		-	
		7 Grieta de bor	de	GB	m	17 Grieta parabolica		GP	m^2	1 EM T	TAB!	T Burk
		8 Reflexión de	juntas	CR	m	18 Hinchamiento		HN	m ²	- T-	阿里里	
		9 Desnivel		DN	m	19 Desprendimiento de	agregados	DAG	m²	Las A	The state of the s	1 37 1
		10 Grietas long	. Y transv.	GLT	m	13: Desprendimento de	- ugregation		***	Brook seems	I WALL	And The last
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCI		PROFUNDIDAD	CANTIDADES I		LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
DAG	L	m ²	0.45	0.33			0.15			0.15	0.05	2.20
PA	M	m ²	18.00	1.50			27.0			36.10	11.94	33.34
PA	M	m ²	13.00	0.70			9.10					
PC	M	m ²	1.22	0.38	1		0.46			0.46	0.15	7.85
HU	M	unid	2.00				2.00)		2.00	0.66	17.00
	res deducidos (q) >	·2		4		4						
	más alto (HVDi)			33.3		-						
Numero maximo	de valores deduci	dos (mi)		7.12		VALOR CORRECTE	2 DEBLEUDA					
3/10				ALORES		VALOR CORREGIDO	DEDUCIDO			AUDUE		VDC
Nº 1	33.34	17.00	7.85	2.20		/CIDOS				60,39	4	33.23
2	33.34	17.00	7.85	2.00			 			60.19	3	38.13
3	33.34	17.00	2.00	2.00			 			54.34	2	38.13 40.04
4	33.34	2.00	2.00	2.00			 			39.34	1	39.30
	33.34	2.00	2.00	2.00	_		 			37.34	- '	39.30
			I	l			MÁX	IMO VD	С			40.04
I						function of course				PCI-	100-(MÁ)	XIMO VDC)
I						INDICE DE COND	ICIÓN DE PAVIME	NTO (PCI)	'	PCI=	59	9.96
						CONDICIÓN DEI	. ESTADO DEL PAV	IMENTO			BUENO	


	10	160	`			DE III OEI II		-		- AC	MALA - EL OR	
			IN			DICION DEL PAVIME NSPECCIÓN N°11 (MÉ						
NOMBRE DE LA	A VÍA		ALACIÓN NORT VERA HASTA I			PROVINCIA	EL ORO			FECHA	06 de Mayo del	2024
UNIDAD MUEST	FREADA	M - 11				PROGRESIVA	KM 0+720.00			AL	KM 0+	738.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao	Castillo Mo	oncada			
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocoo	drilo	PC	m^2	11 Parcheo		PA	m^2		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agre	g.	PU	m^2	Charles and	Mary Inc.	
		3 Agrietamient	to en bloque	BLO	m^2	13 Huecos		HUE	unid	444	Name of the	
		4 Abultamiento	o y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m^2			A STATE OF THE REAL PROPERTY.
		5 Corrugación		COR	m^2	15 Ahuellamiento		AHU	m^2			La Rich
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2	Luci I	No least the second	· · ·
		7 Grieta de boi		GB	m	17 Grieta parabolica		GP	m^2		JAT'S B	
		8 Reflexión de	juntas	CR	m	18 Hinchamiento		HN	m^2		And a line	A. 17
		9 Desnivel		DN	m	19 Desprendimiento d	e agregados	DAG	m ²		Sant I Land	4
		10 Grietas long	g. Y transv.	GLT	m	15 Despreikanniento d	e agregados	DAG	***	11 611		(Females C)
FALLA	SEVERIDAD	UNIDAD	LARGO	ANC	НО	PROFUNDIDAD	CANTIDADE		ALES	TOTAL	DENSIDAD	VALOR DEDUCIDO
DAG	H	m ²	0.95	0.7			0.	67		0.67	0.22	9.16
PC	H	m ²	8.00	0.9				20		8.67	2.87	44.80
PC	H	m²	2.10	0.7			_	47				
PA	M	m²	18.00	1.5	0		27	.00		27.00	8.93	29.88
												<u> </u>
	res deducidos (q)	>2		3		1						
	más alto (HVDi)			44.8		1						
Numero máxim	o de valores deduc	idos (mi)		6.0			o prepriore o					
3.70						VALOR CORREGIDO	O DEDUCIDO			T.D.T.	,	170.0
N°	44.00	20.00		ALORES	DEDU	CIDOS				VDT 83.84	q	VDC 53.01
1	44.80	29.88	9.16								3	
3	44.80 44.80	29.88	2.00							76.68 48.80	2	55.26 48.80
3	44.80	2.00	2.00							48.80	1	48.80
							M.	XIMO V	DC			55.26
						ÍNDICE DE COND	ICIÓN DE BAYES	ENTO CC	T)	PCI=	100-(MÁX	IMO VDC)
						INDICE DE COND.	ICION DE PAVIM	ENTO (PC	.1)	PCI=	44	1.74
						CONDICIÓN DEL	ESTADO DEL PA	VIMENT	0		REGULAR	

		360	`							MA	MALA - EL ORO	
			I)			DICION DEL PAVIME ISPECCIÓN N°12 (MÉT		i				
NOMBRE DE LA	VÍA		ALACIÓN NORT VERA HASTA L			PROVINCIA	EL ORO			FECHA	06 de Mayo del 2	2024
UNIDAD MUEST	READA	M - 12				PROGRESIVA	KM 0+792.0	0		AL	KM 0	+810.00
ÁREA DE LA MU	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao (Castillo Moi	ncada			
						TIPO DE FALLAS						
OBSERV	VACIONES	1 Piel de cocodi	rilo	PC	m ²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m ²	12 Pulimiento de agreg		PU	m^2	Andrew Contract	ELED TIL	RELIEF T
		3 Agrietamiento	o en bloque	BLO	m^2	13 Huecos		HUE	unid	L. D.	医腹膜管管 1	THE RESERVE
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m^2	Contract of the last	Contract of the Ass	de la
		5 Corrugación		COR	m^2	15 Ahuellamiento		AHU	m^2			i de la companya della companya della companya de la companya della companya dell
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2	-		# 100 Y
		7 Grieta de boro	de	GB	m	17 Grieta parabolica		GP	m^2	TAB.	LIBER	T PAGE
		8 Reflexión de j	juntas	CR	m	18 Hinchamiento		HN	m^2			Burt
		9 Desnivel		DN	m	19 Desprendimiento de		DAG	m ²	The state of the state of	1 1 3	
		10 Grietas long	. Y transv.	GLT	m	19 Desprendimiento de	agregados	DAG	ш	1 1967	College of the last	海道 (
FALLA	SEVERIDAD	UNIDAD	LARGO	ANCI	Ю	PROFUNDIDAD	CANTIDADE	S PARCIA	LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
GLT	M	m	2.25				2	.25		2.25	0.74	1.78
PC	H	m ²	6.50	0.70)		4	.55		5.95	1.97	39.75
PC	Н	m ²	2.80	0.50				.40		3.93	1.97	39.73
PA	M	m ²	18.00	1.5	5			.90		27.90	9.23	30.35
GB	Н	m	3.00				3	.00		3.00	0.99	9.18
Número de valo	res deducidos (q):	>?		3								
	más alto (HVDi)	-		39.7	5	1						
	o de valores deduc	idos (mi)		6.53		1						
		,		CÁLCU	LO DE	VALOR CORREGIDO	DEDUCIDO					
N°			\	ALORES	DEDU	CIDOS				VDT	q	VDC
1	39.75	30.35	9.18							79.28	3	50.07
2	39.75	30.35	2.00							72.10	2	52.47
3	39.75	2.00	2.00							43.75	1	43.70
							M.	AXIMO VI)C			52.47
						ÍNDICE DE CONDI	ICIÓN DE PAVIN	ENTO (PC	D	PCI=		IMO VDC)
									,	PCI-	47	.53
						CONDICIÓN DEL	ESTADO DEL PA	AVIMENTO)		REGULAR	



UNIVERSIDAD TECNICA DE MACHALA FACULTAD DE INGENIERIA CIVIL CARRERA DE INGENIERIA CIVIL

			(ARK	EKA	DE INGENIE	RIA CIV	IL		MA	HALA - EL ORO	
			IN	DICE DE HOJA	CON DE IN	DICION DEL PAVIME ISPECCIÓN N°13 (MÉ	NTO FLEXIBI TODO PCI)	LE				
NOMBRE DE L	A VÍA		ALACIÓN NOR: VERA HASTA I			PROVINCIA	EL ORO			FECHA	06 de Mayo del 2	2024
UNIDAD MUEST	TREADA	M - 13				PROGRESIVA	KM 0+864.0	00		AL	KM 0+	882.00
ÁREA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joac	Castillo Mo	ncada			
						TIPO DE FALLAS						
OBSER	VACIONES	1 Piel de cocod	rilo	PC	m ²	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agreg	3 .	PU	m^2	The second second	TOTAL MEN	
		3 Agrietamient	o en bloque	BLO	m ²	13 Huecos		HUE	unid	THE REAL PROPERTY.		Die Die
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de vía ferrea		CVF	m^2	-	The live of the last	THE TABLE
l		5 Corrugación		COR	m^2	15 Ahuellamiento		AHU	m^2	7 7 1 1	the sale bas	
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m^2	The second	The same of	- 東山
		7 Grieta de bor	de	GB	m	17 Grieta parabolica		GP	m^2			建
l		8 Reflexión de	juntas	CR	m	18 Hinchamiento		HN	m^2	CALL	1-11-1	
		9 Desnivel		DN	m	10.70	,	DAG	2	The Late	1 1 1 1	
		10 Grietas long	. Y transv.	GLT	m	19 Desprendimiento de	e agregados	DAG	m ²		Marie San	
FALLA	SEVERIDAD	UNIDAD	LARGO	ANC	НО	PROFUNDIDAD	CANTIDADI	ES PARCL	LES	TOTAL	DENSIDAD	VALOR DEDUCIDO
DAG	Н	m ²	2.20	2.3	0			5.06		5.06	1.67	19.35
PC	Н	m²	3.80	0.6	0			2.28		2.28	0.75	26.60
PA	M	m ²	18.00	1.5	5		2	27.90		27.90	9.23	30.35
EX	L	m ²	0.84	0.6	0			0.50		0.50	0.17	0.10
										i e		
Número de valo	res deducidos (q) >	-2		3								
Valor deducido	más alto (HVDi)			30.3	15	1						
Numero máxim	de valores deduc	idos (mi)		7.4		1						
				CALCU	LO DE	VALOR CORREGIDO	O DEDUCIDO					
N°			V	ALORES	DEDU	UCIDOS				VDT	q	VDC
1	30.35	26.60	19.35							76.30	3	48.28
2	30.35	26.60	2.00							58.95	2	43.27
3	30.35	2.00	2.00							34.35	1	34.40
							M	IAXIMO V	DC			48.28
						ÍNDICE DE COND	ICIÓN DE DATA	MENTO (P)	т.	PCI=	100-(MÁX	IMO VDC)
						INDICE DE COND.	ICION DE PAVI	MENTO (PC	.1)	PCI=	51	72
						CONDICIÓN DEL	ESTADO DEL 1	PAVIMENT	0		REGULAR	

				HOJA	DE D	DICION DEL PAVIME ISPECCIÓN Nº14 (MÉ	NTO FLEXIBL TODO PCI)					
OMBRE DE L	A VIA	AV. CIRCUNVA AV. LA PRIMAV AGOSTO				PROVINCIA	EL ORO			FECHA	06 de Mayo del 2	2024
NIDAD MUES	TREADA	M - 14				PROGRESIVA	KM 0+936.0	0		AL	KM 0+	954.00
REA DE LA M	UESTRA (m²)	302.40				EVALUADOR	Alexander Joao	Castillo Mo	ncada			
						TIPO DE FALLAS		T.L.			100000	
OBSER	VACIONES	1 Piel de cocodr	ilo	PC	m^2	11 Parcheo		PA	m²		Ubicación	
		2 Exudacion		EX	m^2	12 Pulimiento de agreg	Į.	PU	m ^z	of the same of the	The San Kill	
		3 Agrietamiento	en bloque	BLO	m^2	13 Huecos		HUE	umid		AND DESCRIPTION OF THE PERSON NAMED IN	and the
		4 Abultamiento	y hundimiento	ABH	m^2	14 Cruce de via ferrea		CVF	m^2	a di dia dia		
		5 Corrugación		COR	m^2	15 Almellamiento		AHU	m²	THE REAL PROPERTY.		F.L.
		6 Depresión		DEP	m^2	16 Desplazamiento		DES	m²	1000	N. BORREY	1000
		7 Grieta de bord	e	GB	m	17 Grieta parabolica		GP	m²			THE REAL PROPERTY.
		8 Reflexión de ju	untas	CR	m	18 Hinchamiento		HN	m²	- 34	31-1-10	72
		9 Desnivel 10 Grietas long.	Y transv.	DN GLT	m m	19 Desprendimiento de	e <mark>agregado</mark> s	DAG	m²		150	
FALLA	SEVERIDAD	UNIDAD	LARGO	ANG	HO	PROFUNDIDAD	CANTIDADE	SPARCL	ILES	TOTAL	DENSIDAD	VALOR DEDUCID
PA	M	m²	3.50	1.3.	3		4	.66		22.55	10.77	20.00
PA	M	m²	18.00	1.5	5		2	7.90	- 8	32.56	10.77	32.23
lúmero de valo	res deducidos (q)	>2		- 1		8						
THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1	más alto (HVDi)		17	32.2	3	1						
	o de valores deduc	idos (mi)		7.2								
		The state of the s		CHATCON.	(00)	VALOR CORRECTO	DEDITION					111
N°			v	ALORES						VDT	q	VDC
1										32.23	1	32.20
8				Ü	-	8	M	(a)/a12(a)/a)C			32.20
						12 (2) (2) (2) (2) (2) (2) (2) (2)	ceturel construction	AND SHALL SHOULD	200	PCI=	100-(MAX	IMO VDC)
						INDICE DE CONDI	ICION DE PAVE	MENTO (PC	1)	PCI=		7.8
											4.00	- m - 10

Anexo 3: Nivelación del tramo de carretera de la Av. Circunvalación Norte

						DATOS	DE NI	VELAC	IÓN					
PROVE	ECTO:	Evaluación	del Pavimento	de la Aveni	da Circumv	alación Norte d	lesde la A	venida la Pri	imavera hasta	la Avenida	10 de Agosto	en la cuidad de	Machala	
RESPON	SABLE:		oao Castillo M											
ASU	NTO	Avenida Cir	rcunvalación N	orte entre la	Av. La Pri	mavera hasta l	a Av. Juai							
ABSCISA	ATRĀS	VIA DERECHA (HACIA LA 10 DE AG)	BORDILLO Y PARTERRE	H+I	COTA DE ASFALTO	COTA DE BORDILLO Y PARTERRE	ВМ	VIA IZQUIERDA (HACIA LA AV. LA PRIM)	PARTERRE Y BORDILLO	COTA ASFALTO	COTA DE PARTERRE Y BORDILLO	DIFERENCIA ENTRE BORDILLO Y ASFALTO (VIA DERECHA)	DIFERENCIA ENTRE BORDILLO Y ASFALTO (VIA IZOUIERDA)	PROMEDIC ALTURA
	1.409			11.409			10							
8.4		1.920	1.860		9.489	9,549		1.733	1.730	9.676	9.679	0.060	0.003	
0+000	_	1.850	1.000		9.559	3.713	_	1.817	1.750	9.593	3.073	0.000	0.003	0.038
8.4		1.780	1.750		9.629	9.659		1.900	1.840	9.509	9.569	0.030	0.060	0.050
8.4		1.915	1.840		9.494	9.569		1.730	1.690	9.679	9.719	0.075	0.040	
0+020		1.828			9.582			1.823		9.587				0.054
8.4		1.740	1.720		9.669	9.689		1.915	1.834	9.494	9.575	0.020	0.081	
8.4	_	1.910	1.840		9.499	9,569	_	1.725	1.670	9.684	9.739	0.070	0.055	
0+040		1.798	2.010		9.612	2.302		1.824	2.070	9.585	5.135	0.070	0.055	0.075
8.4		1.685	1.605		9.724	9.804		1.923	1.830	9.486	9.579	0.080	0.093	
8.4		1.875	1.815		9.534	9.594		1.720	1.650	9.689	9.759	0.060	0.070	
0+060		1.798			9.612			1.829		9.580				0.073
8.4		1.720	1.663		9.689	9.746		1.938	1.833	9.471	9.576	0.057	0.105	-
8.4	_	1.850	1.795		9,559	9.614	_	1.700	1.620	9.709	9.789	0.055	0.080	
0+080		1.775	2.755		9.634	5.024		1.795	1.020	9.614	5.765	0.055	0.000	0.072
8.4		1.700	1.645		9.709	9.764		1.890	1.790	9.519	9.619	0.055	0.100	
8.4		1.830	1.790		9.579	9.619		1.670	1.608	9.739	9.801	0.040	0.062	
0+100.00		1.750	1.00		9.659			1.755		9.654				0.058
8.4		1.670	1.624		9.739	9.785	_	1.840	1.755	9.569	9.654	0.046	0.085	_
8.4		1.823	1.782		9.586	9.627		1.660	1.600	9.749	9.809	0.041	0.060	
0+120.00		1.731	2.702		9.678	2.027		1.733	2.000	9.677	2.002	0.012	0.000	0.056
8.4		1.639	1.590		9.770	9.819		1.805	1.730	9.604	9.679	0.049	0.075	
8.4		1.810	1.760		9.599	9.649		1.655	1.602	9.754	9.807	0.050	0.053	
0+140.00 8.4		1.718	1 404		9.692	9.824		1.723	1.724	9.687	0.603			0.052
8.9		1.623	1.585		9.784	9.824		1.790	1.726	9.619	9.683	0.040	0.064	-
8.4		1.765	1.720		9,644	9.689		1.660	1.597	9.749	9.812	0.045	0.063	
0+160.00		1.693			9.717			1.724		9.686				0.062
8.4		1.620	1.550		9.789	9.859		1.787	1.716	9.622	9.693	0.070	0.071	
8.4		1.800	1.750		9.609	9.659		1.640	1.590	9.769	9.819	0.050	0.050	
0+185.63 8.4		1.720	1.550		9.689	9,859		1.710	1.710	9.699 9.629	9,699	0.090	0.070	0.065

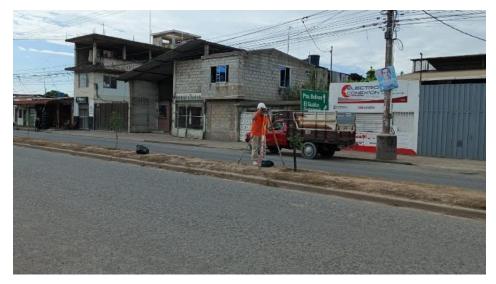
						DATOS	DE NI	VELAC	IÓN					
PROVE	ECTO:	Evaluación	del Pavimento	de la Aveni	da Circumv	alación Norte d	lesde la A	venida la Pri	imavera hasta	la Avenida	a 10 de Agosto	en la cuidad de	e Machala	
RESPON	SABLE:		oao Castillo M											
ASU	NTO	Avenida Cir	rcunvalación N	iorte entre la	Av. Juan l	Montalvo hasta	a la Av. B	uenavista						
ABSCISA	ATRÁS	VIA DERECHA (HACIA LA 10 DE AG)	BORDILLO Y PARTERRE	H+I	COTA DE ASFALTO	COTA DE BORDILLO Y PARTERRE	ВМ	VIA IZQUIERDA (HACIA LA AV. LA PRIM)	PARTERRE Y BORDILLO	COTA ASFALTO	COTA DE PARTERRE Y BORDILLO	DIFERENCIA ENTRE BORDILLO Y ASFALTO (VIA DERECHA)	DIFERENCIA ENTRE BORDILLO Y ASFALTO (VIA IZQUIERDA)	PROMEDIO ALTURA
	1.41			11.449			10.039							
	1.365			11.359			9.994							
	1.46			11.483			10.023							
8.4		1.850	1.800		9.599	9.649		1.745	1.650	9.704	9.799	0.050	0.095	
0+000		1.775			9.674			1.788		9.662				0.061
8.4		1.700	1.650		9.749	9.799		1.830	1.780	9.619	9.669	0.050	0.050	
8.4		1.865	1.807		9.584	9.642		1.739	1.640	9.710	9.809	0.058	0.099	
0+020		1.788			9.662			1.795		9.655				0.072
8.4		1.710	1.630		9.739	9.819		1.850	1.797	9.599	9.652	0.080	0.053	
8.4		1.880	1.816		9.569	9.633		1.710	1.620	9.739	9.829	0.064	0.090	
0+040		1.795	1.010		9.654	9.033		1.790	1.020	9.659	5.025	0.004	0.090	0.075
8.4		1.710	1.620		9.739	9.829		1.870	1.812	9.579	9.637	0.090	0.058	
			1.620			9.829			1.812		9.637	0.090	0.058	_

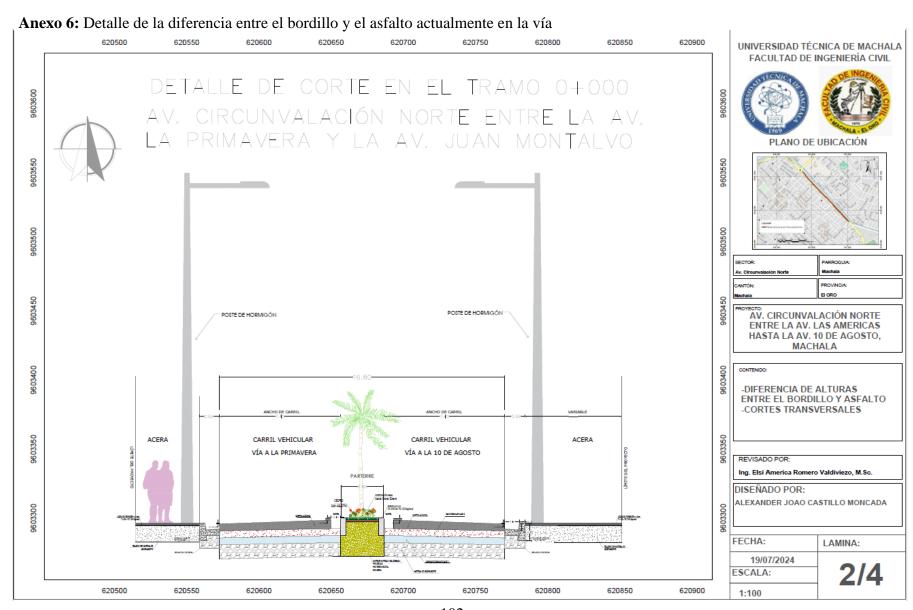
0.4	1.000	1 000	0.540	0.621		1.710	1.630	0.720	0.910	0.070	0.000	
8.4	1.900	1.828	9.549	9.621		1.710	1.630	9.739	9.819	0.072	0.080	0.000
0+060	1.813	1.607	9.637	0.000	_	1.780	1.000	9.669	0.606	0.000	0.007	0.069
8.4	1.725	1.627	9.724	9.822	_	1.850	1.823	9.599	9.626	0.098	0.027	-
0.4	1.000	1.030	0.500	0.610		1.720	1.670		0.770			_
8.4	1.920	1.830	9.529	9.619		1.730	1.670	9.719	9.779	0.090	0.060	
0+080	1.830	1.670	9.619	0.770	_	1.790	1.700	9.659	0.000	0.070	0.000	0.070
8.4	1.740	1.670	9.709	9.779	_	1.850	1.790	9.599	9.659	0.070	0.060	_
0.4	1.017	1.030	0.520	0.610		1 727	1.650		0.700			_
8.4	1.917	1.830	9.532	9.619		1.737	1.650	9.712	9.799	0.087	0.087	
0+100.00	1.827	1.670	9.622	0.770		1.779	1.700	9.671	0.000	0.007	0.030	0.068
8.4	1.737	1.670	9.712	9.779		1.820	1.790	9.629	9.659	0.067	0.030	
0.4	1.912	1.840	0.527	9.609		1.740	1.660		9.789			
8.4		1.840	9.537	9.009			1.660	9.709	9.769	0.072	0.080	0.000
0+120.00	1.816	1.000	9.633	0.700		1.765	1.760	9.684	0.000	0.070	0.040	0.066
8.4	1.720	1.650	9.729	9.799		1.790	1.750	9.659	9.699	0.070	0.040	_
	1.001	1.003	0.540	2000	_	1.760	1.710	0.000	0.730	0.000	0.040	
8.4	1.901	1.803	9.548	9.646		1.750	1.710	9.699 9.644	9.739	0.098	0.040	0.057
0+140.00	1.836	1.710	9.614	0.730		1.805	1 020		0.610	0.060	0.020	0.057
8.4	1.770	1.710	9.679	9.739		1.860	1.830	9.589	9.619	0.060	0.030	
	1.020	1.700	0.010			1 440	1 400	0.700	2 2 2 2			_
8.4	1.830	1.750	9.619	9.699	_	1.650	1.590	9.799	9.859	0.080	0.060	0.070
0+160.00	1.790	1.000	9.659	0.700		1.705	1.710	9.744	0.730	0.000	0.050	0.070
8.4	1.750	1.660	9.699	9.789		1.760	1.710	9.689	9.739	0.090	0.050	
L	1.000	1.740	 0.000	0.000		1.645	1.000	0.710	0.770	0.000	0.000	_
8.4	1.840	1.750	9.519	9.609		1.640	1.580	9.719	9.779	0.090	0.060	0.000
0+180.00	1.765	1 607	9.594	0.763		1.680	1.600	9.679	0.660			0.066
8.4	1.690	1.607	9.669	9.752		1.720	1.690	9.639	9.669	0.083	0.030	
L	1.000	1 707	 0.000	0.435		1	1 474	0.75	0.702	0.000		_
8.4	1.850	1.787	9.509	9.572		1.605	1.570	9.754	9.789	0.063	0.035	0.046
0+200.00	1.728	1.670	9.632	0.700		1.683	1.710	9.677	0.640		0.000	0.046
8.4	1.605	1.570	9.754	9.789		1.760	1.710	9.599	9.649	0.035	0.050	_
-												_
8.4	1.840	1.785	9.519	9.574		1.620	1.567	9.739	9.792	0.055	0.053	0.040
0+220.00	1.732	1.600	9.627	0.700		1.685	1.720	9.674	0.430			0.048
8.4	1.624	1.569	9.735	9.790		1.750	1.720	9.609	9.639	0.055	0.030	_
	1.033	1 704	0.500	0.674		1.020	1 ***	0.010	0.004	0.014	0.000	
8.4	1.831	1.785	9.528	9.574	-	1.630	1.565	9.819	9.884	0.046	0.065	0.000
0+240.00	1.731	1 545	9.629	0.204	_	1.695	1 720	9.754	0.711	0.000	0.000	0.050
8.4	1.630	1.565	9.729	9.794		1.760	1.738	9.689	9.711	0.065	0.022	
0.1	1.000	1 700	0.515	0.200		1 445	1 200	0.000	0.040	0.000	0.000	_
8.4	1.840	1.790	9.519	9.569		1.640	1.580	9.809	9.869	0.050	0.060	0.003
0+260.00 8.4	1.757	1 500	9.602	0.767		1.690	1 220	9.759	0.720	0.000	0.000	0.053
0.7	1.074	1.592	9.685	9.767		1.740	1.720	9.709	9.729	0.082	0.020	
0.4	1 040	1 705	0.500	0.564		1 444	1 605	0.704	0.044	0.055	0.050	
8.4	1.850	1.795	9.509	9.564		1.655	1.605	9.794	9.844	0.055	0.050	0.042
0+280.00 8.4	1.773	1 640	9.587	0.710		1.693	1 721	9.757	0.720	0.000	0.000	0.042
0.7	1.093	1.640	9.664	9.719		1./30	1.721	9.719	9.728	0.055	0.009	
0.4	1.074	1.030	0.404	0.630		1.640	1 600	0.000	0.040	0.045	0.000	
8.4	1.875	1.830	9.484	9.529		1.640	1.580	9.809	9.869	0.045	0.060	0.000
0+300.00	1.765	1 202	9.594	0.741		1.693	1 707	9.756	0.747	0.000	A AT-	0.050
8.4	1.655	1.600	9.704	9.759		1.746	1.707	9.703	9.742	0.055	0.039	_
0.4	1.074	1 030	0.404	0.630	_	1.640	1 600	0.000	0.040	0.045	0.000	_
8.4	1.875	1.830	9.484	9.529	_	1.640	1.580	9.809	9.869	0.045	0.060	0.050
0+320.00	1.765	1 600	9.594	0.750		1.693	1 202	9.756	0.740	0.055	0.030	0.050
8.4	1.655	1.600	9.704	9.759	_	1.746	1.707	9.703	9.742	0.055	0.039	_
8.4	1 075	1 020	0.494	0.520		1.640	1 500	0.000	0.040	0.045	0.060	
8.4 0+340.00	1.875	1.830	9.484 9.594	9.529	_	1.640	1.580	9.809	9.869	0.045	0.060	0.050
-	_	1 600		0.750			1 202	9.756	0.740	0.055	0.030	0.030
8.4	1.655	1.600	9.704	9.759	_	1.746	1.707	9.703	9.742	0.055	0.039	_
8.4	1.880	1.821	0.602	9.662		1,650	1.603	9.833	9.880	0.059	0.047	
0+360.00	1.880	1.021	9.603	9.002	_	1.650	1.003		5.00U	0.039	0.047	0.047
-	_	1.615		0.000			1.740	9.773	0.741	0.055	0.000	0.04/
8.4	1.670	1.615	9.813	9.868	_	1.770	1.742	9.713	9.741	0.055	0.028	_
8.4	1.890	1.821	9.593	9.662		1.665	1.603	0.010	9.880	0.060	0.060	
		1.021		9.002	_		1.003	9.818	5.00U	0.069	0.062	0.061
0+380.00 8.4	1.788	1.615	9.696 9.798	9.868		1.726	1.742	9.758 9.697	9.741	0.070	0.044	0.061
0.7	1.063	1.013	5./98	5.008		1.780	1.172	9.091	5.771	0.070	0.044	
8.4	1.885	1.822	9.598	9.661		1.662	1.602	0.001	9.881	0.063	0.060	
0+400.00		1.022	9.706	9.001		1.716	1.002	9.821 9.767	7.001	0.063	0.060	0.060
	1.778	1 600		0.001	_		1 220		0.763	0.050	0.050	0.060
8.4	1.670	1.602	9.813	9.881		1.770	1.720	9.713	9.763	0.068	0.050	
8.4	1 001	1.822	0.602	0.661		1.660	1.600	0.000	9.881	0.000	0.000	
8.4	1.881	1.622	9.602 9.713	9.661		1.660	1.602	9.823 9.778	9.881	0.059	0.058	0.051
04420.00	1 771							- W / / 100				- 0.0001
0+420.00	1.771	1 600		0.001			1 720		0.763	0.050	0.020	0.052
0+420.00 8.4	1.771	1.602	9.823	9.881		1.750	1.720	9.733	9.763	0.058	0.030	0.032

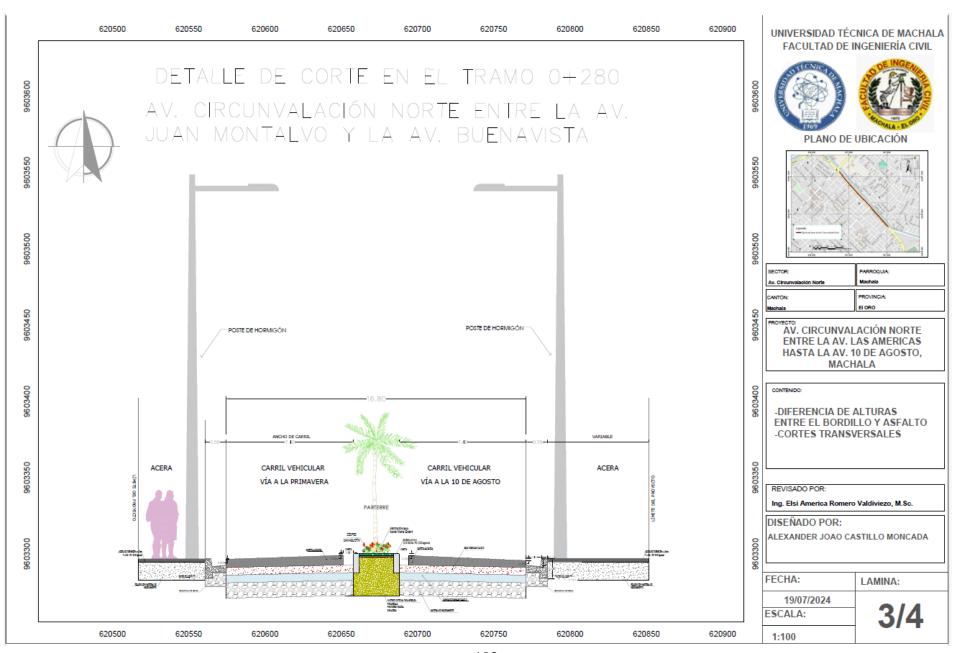
8.4	1.790	1.770	9.693	9.713	1.670	1.610	9.813	9.873	0.020	0.060	
0+440.00	1.715		9.768		1.685		9.798				0.045
8.4	1.640	1.580	9.843	9.903	1.700	1.660	9.783	9.823	0.060	0.040	
8.4	1.780	1.733	9.703	9.750	1.620	1.560	9.863	9.923	0.047	0.060	
0+461.20	1.700		9.783		1.635		9.848				0.049
8.4	1.620	1.560	9.863	9.923	1.650	1.620	9.833	9.863	0.060	0.030	

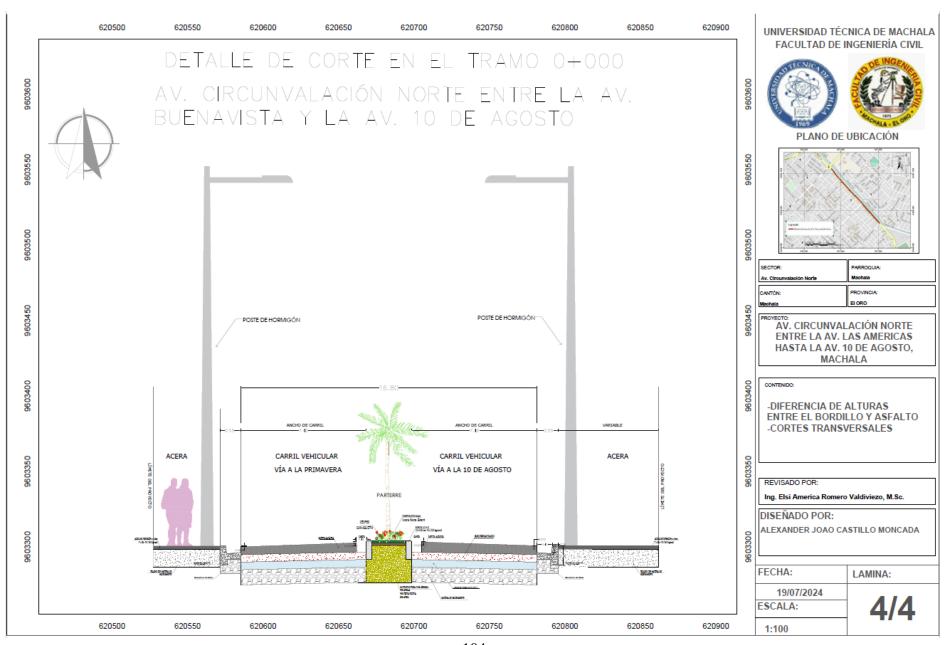
PROVE						DATOS	DE NI	VEL AC	ION					
	сто:	Evaluación	del Pavimento	de la Avenio	ia Circunv					la Avenida	10 de Agosto	en la cuidad d	e Machala	
RESPONS	SABLE:		oao Castillo M											
ASUN		Avenida Cir	rcunvalación N	orte entre la	Av. Buen	avista hasta la .	Av. 10 de	Agosto						
ABSCISA	ATRÁS	VIA DERECHA (HACIA LA 10 DE AG)	BORDILLO Y PARTERRE	H+I	COTA DE ASFALTO	COTA DE BORDILLO Y PARTERRE	ВМ	VIA IZQUIERDA (HACIA LA AV. LA	PARTERRE Y BORDILLO	COTA ASFALTO	COTA DE PARTERRE Y BORDILLO	DIFERENCIA ENTRE BORDILLO Y ASFALTO (VIA		
	1.39			11.696			10.306	PRIM)				DERECHA)	IZQUIERDA)	
	1.479			11.832			10.353							
	1.178			11.604			10.426							
8.4		1.930	1.943		9.766	9.753	-	1.715	1.690	9.981	10.006	-0.013	0.025	
0+000		1.820	1.5.15		9.876	222		1.753	1.024	9.944	10.000	-0.013	0.023	0.021
8.4		1.710	1.690		9.986	10.006		1.790	1.740	9.906	9.956	0.020	0.050	
		1.000	1.000		0.014			1.001	1.000		10.044			
8.4 0+020		1.880	1.850		9.816 9.906	9.846	_	1.681	1.650	10.015 9.966	10.046	0.030	0.031	0.029
8.4		1.700	1.681		9.996	10.015		1.780	1.743	9.916	9,953	0.019	0.037	0.025
8.4		1.870	1.790		9.826	9.906		1.684	1.640	10.012	10.056	0.080	0.044	
0+040 8.4		1.782	1.670		9.915	10.026		1.734	1.760	9.963 9.913	9.946	0.023	0.033	0.045
8.4		1.093	1.070		10.003	10.026		1.783	1.750	9.913	9.940	0.023	0.055	
8.4		1.860	1.750		9.836	9.946		1.690	1.650	10.006	10.046	0.110	0.040	
0+060		1.775			9.921			1.738		9.959				0.055
8.4		1.690	1.650		10.006	10.046		1.785	1.755	9.911	9.941	0.040	0.030	
8.4		1.810	1.740		9.886	9.956	_	1.723	1.645	9.973	10.051	0.070	0.078	
0+080		1.767	1.740		9.930	9.930		1.757	1.043	9.940	10.031	0.070	0.078	0.062
8.4		1.723	1.645		9.973	10.051		1.790	1.768	9.906	9.928	0.078	0.022	
8.4		1.810	1.760		9.886 9.934	9.936	_	1.715	1.650	9.981	10.046	0.050	0.065	0.050
0+100.00 8.4		1.705	1.655		9.934	10.041		1.780	1.747	9.949	9.949	0.060	0.033	0.052
8.4		1.812	1.780		9.884	9.916		1.700	1.660	9.996	10.036	0.032	0.040	
0+120.00 8.4		1.756	1.660		9.940	10.036		1.725	1.732	9.971	9.964			0.032
0.7		1.700	1.000		9.390	10.036	_	1.730	1./52	9.946	9.904	0.040	0.018	
8.4		1.850	1.830		9.982	10.002		1.720	1.668	10.112	10.164	0.020	0.052	
0+140.00		1.790			10.042			1.760		10.072				0.041
8.4		1.730	1.668		10.102	10.164		1.800	1.770	10.032	10.062	0.062	0.030	
8.4		1.890	1.842		9.942	9.990	_	1.737	1.675	10.095	10.157	0.048	0.062	
0+160.00		1.820	1.0.12		10.012			1.788	2.072	10.044	10.157	0.010		0.055
8.4		1.750	1.675		10.082	10.157		1.839	1.805	9.993	10.027	0.075	0.034	
		1.004	1.040		0.022	0.000		1.704	1.000	10.107	10.175	0.000	0.022	
8.4 0+180.00		1.895	1.840		9.937	9.992	_	1.725	1.660	10.107	10.172	0.055	0.065	0.054
8.4		1.747	1.676		10.085	10.156		1.816	1.790	10.016	10.042	0.071	0.026	
8.4		1.900	1.840		9.932	9.992		1.713	1.655	10.119	10.177	0.060	0.058	0.040
0+200.00 8.4		1.821	1.678		10.011	10.154		1.753	1.783	10.079	10.049	0.064	0.010	0.048
		2	2			20.02				10.035		9.00/1	0.020	
8.4		1.810	1.785		10.022	10.047		1.672	1.623	10.160	10.209	0.025	0.049	
0+220.00		1.741	1,775		10.091			1.721	1.500	10.111				0.040
8.4		1.672	1.623		10.160	10.209		1.770	1.735	10.062	10.097	0.049	0.035	
8.4		1.785	1.742		10.047	10.090		1.660	1.620	10.172	10.212	0.043	0.040	
0+240.00		1.722			10.110			1.713		10.120				0.039
8.4		1.659	1.620		10.173	10.212		1.765	1.732	10.067	10.100	0.039	0.033	
8.4		1.810	1.710		10.022	10.122		1.650	1.610	10.182	10.222	0.100	0.040	
0+260.00		1.729	2.710		10.103	10.122		1.705	1.010	10.132	10.222	0.100	0.010	0.052

8.4	1.648	1.610	10.1	84 1	0.222	1.760	1.730	10.072	10.102	0.038	0.030	
8.4	1.810	1.710	10.0	22 1	0.122	1.650	1.610	10.182	10.222	0.100	0.040	
0+280.00	1.729		10.1	03		1.705		10.127				0.052
8.4	1.648	1.610	10.1	84 1	0.222	1.760	1.730	10.072	10.102	0.038	0.030	
8.4	1.572	1.461	10.0	_	0.143	1.400	1.370	10.204	10.234	0.111	0.030	
0+300.00	1.509		10.0	96		1.486		10.119				0.075
8.4	1.445	1.360	10.1	59 1	0.244	1.571	1.498	10.033	10.106	0.085	0.073	
8.4	1.560	1.480	10.0	14 1	0.124	1.380	1.350	10.224	10.254	0.080	0.030	-
0+320.00	1.490	1.700	10.1		0.127	1.436	1.370		10.234	0.000	0.050	0.052
		1246		-	0.000		1.470	10.168	10.124			0.032
8.4	1.420	1.345	10.1	9+ 1	0.259	 1.492	1.470	10.112	10.134	0.075	0.022	-
8.4	1.551	1.502	10.0	53 1	0.102	1.360	1.315	10.244	10.289	0.049	0.045	
0+340.00	1.466		10.1	39		1.401		10.203				0.037
8.4	1.380	1.336	10.2	24 1	0.268	1.442	1.430	10.162	10.174	0.044	0.012	
8.4	1.442	1.382	10.1		0.222	1.260	1.250	10.344	10.354	0.060	0.010	
0+364.50	1.356		10.2	18		1.285		10.319				0.032
8.4	1.270	1.220	10.3	34 1	0.384	1.310	1.303	10.294	10.301	0.050	0.007	


Anexo 4: Trabajo de Campo







Anexo 5: Vista en Planta de la vía con sus respectivos puntos de BM 620500 620550 620600 620650 620700 620750 620800 620850 620900 UNIVERSIDAD TÉCNICA DE MACHALA AV. CIRCUNVALACIÓN NORTE ENTRE LA AV. FACULTAD DE INGENIERÍA CIVIL LA PRIMAVERA Y LA AV. JUAN MONTALVO 9603600 PLANO DE UBICACIÓN AV. CIRCUNVALACIÓN NORTE ENTRE LA AV. JUAN MONTALVO Y LA AV. BUENAVISTA AV. CIRCUNVALACIÓN NORTE **ENTRE LA AV. LAS AMERICAS** HASTA LA AV. 10 DE AGOSTO, SIMBOLOGIA **MACHALA** LINEA DE FABRICA -LEVANTAMIENTO DE LA VÍA LINEA DE BORDILLO LINEA DE ASPALTO -PUNTOS REFERENCIALES DE LA POZO NIVELACIÓN POSTE SUMBERO AV. CIRCUNVALACIÓN NORTE ENTRE LA AV. BM DEL LEVANTAMIENTO BUENAVISTA Y LA AV. 10 DE AGOSTO REVISADO POR: Ing. Elsi America Romero Valdiviezo, M.Sc. DISEÑADO POR: ALEXANDER JOAO CASTILLO MONCADA FECHA: LAMINA: 19/07/2024 ESCALA: 620500 620550 620600 620650 620700 620750 620850 620900 620800 1:100

