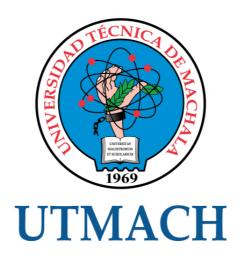


FACULTAD DE INGENIERÍA CIVIL CARRERA DE INGENIERÍA CIVIL

LEVANTAMIENTO DE DATOS TOPOGRÁFICOS DE LOS ELEMENTOS GEOMÉTRICOS DE LA ESTRUCTURA DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA

> TORRES CRIOLLO JOYCE LORETH INGENIERA CIVIL

> > MACHALA 2023



FACULTAD DE INGENIERÍA CIVIL CARRERA DE INGENIERÍA CIVIL

LEVANTAMIENTO DE DATOS TOPOGRÁFICOS DE LOS ELEMENTOS GEOMÉTRICOS DE LA ESTRUCTURA DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA

> TORRES CRIOLLO JOYCE LORETH INGENIERA CIVIL

> > MACHALA 2023

FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

EXAMEN COMPLEXIVO

LEVANTAMIENTO DE DATOS TOPOGRÁFICOS DE LOS ELEMENTOS GEOMÉTRICOS DE LA ESTRUCTURA DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA

TORRES CRIOLLO JOYCE LORETH INGENIERA CIVIL

ROMERO VALDIVIEZO ELSI AMERICA

MACHALA, 01 DE MARZO DE 2023

MACHALA 01 de marzo de 2023

LEVANTAMIENTO DE DATOS TOPOGRÁFICOS DE LOS ELEMENTOS GEOMETRICOS DE LA ESTRUCTURA DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA

por Joyce Loreth Torres Criollo

Fecha de entrega: 22-feb-2023 03:02p.m. (UTC-0500)

Identificador de la entrega: 2020666820

Nombre del archivo: 01_TORRES_JOYCE_-.docx (40.98K)

Total de palabras: 2455 Total de caracteres: 13182

LEVANTAMIENTO DE DATOS TOPOGRÁFICOS DE LOS ELEMENTOS GEOMETRICOS DE LA ESTRUCTURA DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA

INFORME DE ORIGINALIDAD

INDICE DE SIMILITUD

FUENTES DE INTERNET

PUBLICACIONES

TRABAJOS DEL

ESTUDIANTE

FUENTES PRIMARIAS

academica-e.unavarra.es

Fuente de Internet

Excluir citas

Activo

Excluir coincidencias < 15 words

Excluir bibliografía

Activo

CLÁUSULA DE CESIÓN DE DERECHO DE PUBLICACIÓN EN EL REPOSITORIO DIGITAL INSTITUCIONAL

La que suscribe, TORRES CRIOLLO JOYCE LORETH, en calidad de autora del siguiente trabajo escrito titulado LEVANTAMIENTO TOPOGRÁFICOS DE LOS ELEMENTOS GEOMÉTRICOS DE LA ESTRUCTURA DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA, otorga a la Universidad Técnica de Machala, de forma gratuita y no exclusiva, los derechos de reproducción, distribución y comunicación pública de la obra, que constituye un trabajo de autoría propia, sobre la cual tiene potestad para otorgar los derechos contenidos en esta licencia.

La autora declara que el contenido que se publicará es de carácter académico y se enmarca en las dispociones definidas por la Universidad Técnica de Machala.

Se autoriza a transformar la obra, únicamente cuando sea necesario, y a realizar las adaptaciones pertinentes para permitir su preservación, distribución y publicación en el Repositorio Digital Institucional de la Universidad Técnica de Machala.

La autora como garante de la autoría de la obra y en relación a la misma, declara que la universidad se encuentra libre de todo tipo de responsabilidad sobre el contenido de la obra y que asume la responsabilidad frente a cualquier reclamo o demanda por parte de terceros de manera exclusiva.

Aceptando esta licencia, se cede a la Universidad Técnica de Machala el derecho exclusivo de archivar, reproducir, convertir, comunicar y/o distribuir la obra mundialmente en formato electrónico y digital a través de su Repositorio Digital Institucional, siempre y cuando no se lo haga para obtener beneficio económico.

Machala, 01 de marzo de 2023

TORRES CRIOLLO JOYCE LORETH 0705755643

RESUMEN

Una de las obras con mayor importancia en la construcción vial son los puentes vehiculares, cuya estructura debe ser evaluada cada cierto tiempo debido a que están sometidos a grandes cargas y factores meteorológicos que los afectan, de esta manera se busca garantizar su funcionalidad y seguridad, uno de los primero pasos para estas evaluaciones estructurales es contar con información entorno a la topografía del puente; partiendo de lo antes mencionado este trabajo está enfocado en un estudio topográfico para la caracterización de los elementos del puente vehicular de la Universidad Técnica de Machala ubicado en la vía Panamericana Km 5 ½ vía a Pasaje, a través de un levantamiento topográfico con estación total y un modelado 3d en el software AutoCAD Civil 3D, con la finalidad de obtener información topográfica de la estructura, la importancia de contar con estos datos topográficos como son coordenadas y dimensiones de los elementos estructurales del puente permiten utilizar esta información para posteriores análisis y estudios entorno al comportamiento estructural y como consecuencia plantear propuestas de mejoramiento o rediseño de la estructura.

Palabras clave: Puente vehicular, topografía, levantamiento topográfico, modelado 3D.

ABSTRACT

One of the most important works in road construction are vehiculares bridges, whose structure must be evaluated from time to time because they are subjected to great loads and meteorological factors than degraded ones, in this way it seeks to guarantee their functionality and safety. One of the first steps for these structural evaluations is to have information about the topography of the bridge; Based on the aforementioned, this work is focused on a topographic study for the characterization of the elements of the vehicular bridge of the Universidad Técnica de Machala located on the Av. Panamericana Km 5 1/2 via a Pasaje, through a topographic survey with a total station and a 3d modeling in the AutoCAD Civil 3D software, in order to obtain topographic information of the structure, the importance of having these topographic data such as coordinates and dimensions of the structural elements of the bridge allow us to use this information for further analysis and environmental studies to structural behavior and as a consequence raised proposals for improvement or redesign of the structure.

Keywords: Vehicular bridge, topography, topographic survey, 3D modeling.

INDICE DE CONTENIDO

RESUMEN	III
ABSTRACT	IV
INTRODUCCIÓN	7
1.1. Objetivos del Proyecto.	8
1.1.1. Objetivo General	8
1.1.2. Objetivos Específicos	8
DESARROLLO	9
2.1. Ubicación del proyecto	9
2.2. Puente Vehicular	9
2.2.1. Puente vehicular curvo	10
2.3. Topografía	10
2.3.1. Divisiones de la Topografía	11
2.3.1.1. Planimetría	11
2.3.1.2. Altimetría	11
2.4. Topografía de Puentes	11
2.4.1. Levantamientos Topográficos para Puentes	11
2.4.1.1. Levantamiento preliminar	11
2.4.1.2. Levantamiento para el proyecto	12
2.4.1.3. Levantamiento para el control de situación	12
2.5. Instrumentos topográficos	12
2.5.1. Estación Total	12
2.5.2. GPS	12
2.5.3. Cinta	13
2.6. Metodología para el levantamiento topográfico y modelado en 3D	13
2.6.1. Levantamiento Topográfico en campo	13
2.6.2. Modelado en el software Civil 3D.	14
CONCLUSIONES	18
REFERENCIAS BIBLIOGRÁFICAS	19
ANEVOS	21

INDICE DE ILUSTRACIONES

Ilustración 1: Puente vehicular de la Universidad Técnica de Machala	9
Ilustración 2: Puntos exportados a Civil 3D	14
Ilustración 3: Georreferenciación del proyecto.	15
Ilustración 4: Modelado en Civil 3D	15
Ilustración 5: Modelado 3D del puente vehicular sin losa.	16
Ilustración 6: Modelado 3D del puente vehicular con losa.	16
Ilustración 7: Modelado 3D del puente vehicular de la Universidad Técnica de Machala	17
INDICE DE TABLAS	
Tabla 1: Coordenadas del proyecto.	9
Tabla 2: Coordenadas en la Universidad Técnica de Machala proporcionadas por el IGM	13

INTRODUCCIÓN

En la construcción y análisis de obras civiles se utilizan una serie de métodos que permitan solucionar las necesidades presentes en campo, la topografía es una de las ciencias primordiales utilizadas para la realización de cualquier tipo de obra, sin embargo, su significancia ha sido minimizado dentro de los ámbitos de la construcción.

Con el paso de los años, la notabilidad de la topografía ha aumentado, debido a la necesidad de precisar límites y trazar niveles que tengan mayor exactitud en trabajos de ingeniería. Esta ciencia aplica métodos, instrumentos y principios fundamentales para la representación de cualquier tipo de edificación o terreno permitiendo recopilar datos topográficos necesarios para el estudio de una obra y su funcionalidad, convirtiéndose en una parte significativa en el proceso constructivo, resaltando su importancia antes, durante y después de la construcción. [1]

Los levantamientos topográficos sirven para obtener los puntos estratégicos del terreno en donde se va a construir, en este proceso intervienen varios factores que deben tomarse en cuenta como el equipo topográfico, ubicación del proyecto e identificación del tipo de trabajo que se va a realizar ya sea construcción, reconstrucción o la caracterización espacial de elementos de alguna estructura existente.

Un estudio topográfico en un proyecto existente permite conseguir los datos necesarios para el posterior análisis y reconstrucción de una estructura. En el caso de los puentes vehiculares, son estructuras que soportan vibraciones provocadas por la carga vehicular, lo que afecta con el paso del tiempo a los elementos estructurales del puente y con ello se pone en riesgo la seguridad y funcionalidad de la estructura.

La falta de datos topográficos de una obra civil ya construida se convierte en un problema al momento de un posible rediseño o análisis estructural, el puente vehicular de la Universidad Técnica de Machala es una estructura construida hace aproximadamente 12 años, de la cual no se tienen datos topográficos y no se cuenta con un detalle de los elementos estructurales del puente, este tipo de estructuras soportan cargas considerables ya que su diseño es en beneficio de la movilidad urbana ayudando así a minimizar el congestionamiento vehicular, por ello un análisis topográfico es fundamental para obtener datos precisos entorno a sus elementos estructurales y otros detalles, los cuales servirán para posteriores estudios del puente entorno al comportamiento de la estructura debido a los procesos dinámicos a los que

es sometido y daños provocados por factores meteorológicos, con la finalidad de salvaguardar la seguridad de las personas.

Este proyecto está enfocado en un estudio topográfico para la caracterización espacial de los elementos del puente vehicular de la Universidad Técnica de Machala con la finalidad de obtener las coordenadas con el uso de estación total y así contar con información entorno a la estructura del mismo, a través de un levantamiento topográfico, método utilizado para obtener datos topográficos necesarios para un diseño y posteriores estudios entorno al comportamiento estructural; con la finalidad de plantear propuestas de rediseño o mejoramiento que beneficien en la funcionalidad y seguridad estructural del puente. Además de realizar un modelado en 3D con un software de diseño, en este caso el AutoCAD Civil 3D.

1.1. Objetivos del Proyecto.

1.1.1. Objetivo General

Realizar el levantamiento topográfico del puente vehicular de la Universidad Técnica de Machala con el uso de equipos topográficos para la caracterización espacial de los elementos geométricos de la estructura.

1.1.2. Objetivos Específicos

- Recopilar información de artículos científicos entorno al levantamiento topográfico de un puente vehicular.
- Realizar el levantamiento topográfico tomando en cuenta planimetría y altimetría del puente vehicular de la Universidad Técnica de Machala.
- Elaborar el modelado 3D de los datos obtenidos a través del levantamiento topográfico del puente vehicular mediante el uso del software AutoCAD Civil 3D.

DESARROLLO

2.1. Ubicación del proyecto

El puente vehicular de la Universidad Técnica de Machala se encuentra ubicado a las afueras de los predios de la Institución de Educación Superior, específicamente en la Av. Panamericana Km 5 ½ vía a Pasaje.

Tabla 1: Coordenadas del proyecto.

COORDENADAS UTM					
Coordenadas iniciales (En dirección a la salida Coordenadas finales (En dirección a la entrada					
de Machala)			de Machala)		
ESTE	NORTE	ELEVACIÓN	ESTE NORTE ELEVAC		
620590.562	96366669.124	11.829	620613.013	9636688.651	12.130
ESTE	NORTE	ELEVACIÓN	ESTE	NORTE	ELEVACIÓN
620591.679	9636672.830	11.899	620614.234	9636692.110	12.108

Ilustración 1: Puente vehicular de la Universidad Técnica de Machala.

Fuente: Google Earth

2.2. Puente Vehicular

Los puentes de carretera son obras viales que están diseñadas con el objetivo de mejorar la movilidad en el entorno urbano, conduciendo determinados volúmenes de carga y tráfico de manera segura minimizando así el congestionamiento vehicular. Estas estructuras permiten

conectar ciudades y con esto impulsar el desarrollo social y económico, por ello, es necesario que estas obras de infraestructura cuenten con diseños seguros y funcionales. [2]

Los aspectos básicos para el diseño de un puente vehicular es el estudio de la zona donde se va a construir tomando en cuenta los detalles geográficos como cuencas hidrográficas y condiciones geotécnicas, además, se debe considerar el tamaño y tipo de vehículo para el cual la estructura será diseñada. [3]

Los puentes vehiculares requieren de un constante monitoreo que permita analizar los daños o fallas que pueda presentar debido a su susceptibilidad para presentar deterioros ya sea de forma gradual o acumulada provocadas por las fuerzas externas que soporta durante su etapa de vida útil. [4]

La evaluación de este tipo de estructuras se basa en los efectos durante y después de la construcción, lo cual es una parte fundamental para plantear propuestas enfocadas en el mejoramiento, rehabilitación o sustitución de la estructura. [5]

Las inspecciones de los puentes de carretera requieren de niveles en los cuales se pueda evaluar la funcionalidad, es decir, un nivel enfocado en la inspección visual y ordinaria y un segundo nivel en donde se apliquen herramientas topográficas para un análisis más profundo de la estructura. [6]

2.2.1. Puente vehicular curvo

Este tipo de puentes deben contar con un control severo con respecto a su geometría, esto es necesario durante todas las fases de construcción con la finalidad de que las transiciones en los niveles no sean tan notorias para los conductores al momento de utilizar el puente, estas diferencias en los niveles de la rasante suelen tener mayor impacto en el centro del puente, sin embargo, el control realizado en la construcción de este tipo de puentes permite que la sobre elevación en esta parte del puente no sea objeto de accidentes, asegurando así la funcionalidad y seguridad del proyecto. [7]

2.3. Topografía

La topografía es una de las aplicaciones con mayor importancia en el campo de la construcción, los diversos métodos topográficos se aplican para el diseño y ejecución de las obras de ingeniería ya sean estructurales, viales e hidráulicas en los diferentes procesos constructivos de la obra que son: levantamiento, control y replanteo. [8]

La topografía permite la ubicación de puntos de forma relativa o absoluta en la superficie terrestre, es decir, analiza los diferentes métodos aplicables para realizar mediciones sobre el terreno y obtener una representación gráfica que sirva como guía para el proyecto que se va a construir. [9]

2.3.1. Divisiones de la Topografía

2.3.1.1.Planimetría

La planimetría se enfoca en la ubicación de puntos para la proyección del terreno con referencia en un plano horizontal, es decir, no se toma en cuenta el relieve y la altitud, enfocando los detalles y referencias presentes en el terreno sobre una superficie plana. [9]

2.3.1.2. Altimetría

La altimetría se enfoca en la altura del terreno, es decir, toma en cuenta las diferencias de nivel que el terreno presenta y de esta manera se proyecta en un plano vertical, detallando las características del relieve. [9]

2.4. Topografía de Puentes

Los estudios implementados en obras viales como puentes quedan expresados de forma planimétrica a puntos en la zona de estudio, de acuerdo a la magnitud del proyecto estos puntos pueden ser geodésicos GPS o referidos en un punto preciso el cual fue seleccionado con anterioridad. [10]

2.4.1. Levantamientos Topográficos para Puentes

Los levantamientos topográficos permiten obtener puntos o coordenadas en el terreno de manera precisa, los cuales son utilizados para el proceso constructivo de una obra. [11]

Los levantamientos para obras de gran o mediana magnitud de puentes cuentan con tres tipos de trabajos topográficos necesarios en este tipo de obra civil.

2.4.1.1.Levantamiento preliminar

Es un levantamiento topográfico que permite plasmar los detalles de la zona de estudio donde se va a construir, este tipo de levantamiento incluye varios aspectos de acuerdo a la magnitud de la obra. [10]

2.4.1.2.Levantamiento para el proyecto

Los datos topográficos son indispensables para detallar los elementos necesarios en una obra de ingeniería, por ello es importante la exactitud al momento de realizar el levantamiento del proyecto. [10]

2.4.1.3. Levantamiento para el control de situación

EL levantamiento para el control de situación permite plasmar la ubicación final y definitiva del puente, esta parte es una de las bases para la construcción de la obra. [10]

2.5. Instrumentos topográficos

En la actualidad se han desarrollado nuevos sistemas y tecnologías para la obtención de datos topográficos como levantamientos por Drone o RTK, los cuales se caracterizan por brindar datos con mayor exactitud y rapidez. Sin embargo, en este proyecto los principales instrumentos utilizados para el levantamiento del puente vehicular son: Estación Total, Cinta, Prisma, GPS.

2.5.1. Estación Total

La estación total es considerada uno de los elementos de medición fundamentales en el campo de la topografía en especial para los trabajos enfocados en obras ingenieril. Este equipo de medición se define como un sistema de instrumentos compuestos para la facilitación de los trabajos topográficos de los diferentes tipos de obras civiles. [1]

Las estaciones totales cuentan con microprocesadores que permiten obtener las componentes de la distancia tanto horizontal como vertical, el azimut y las coordenadas de un punto específico, esta herramienta permite determinar estos datos de manera exacta y rápida. [12]

Este sistema de medición, actualmente, es eficiente para áreas que no cuenten con gran cantidad de puntos, debido a que los nuevos instrumentos de vanguardia como Drones y sistema RTK permiten realizar un trabajo más rápido y preciso. [11]

2.5.2. GPS

El GPS es un sistema de medición que permite establecer la ubicación a escala mundial de un punto u objeto sobre una superficie. Técnicamente el GPS se considera como un sistema global de navegación por satélites (GNSS). [13]

Los sistemas GNSS con el paso del tiempo y el desarrollo de la tecnología se han actualizado permitiendo obtener datos precisos de un punto específico de la zona donde se busca realizar un proyecto. [14]

Los dispositivos GPS cuentan con un sistema propio de escala, así como de referencia, la cual se acopla de acuerdo a la posición de los satélites, es importante señalar que este sistema de medición cuenta con errores provocados por diversos factores meteorológicos, interferencias provocadas por alumbrado eléctrico, entre otros. [15]

2.5.3. Cinta

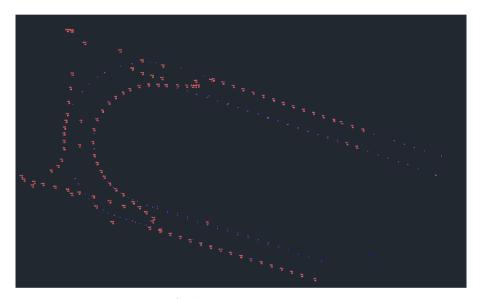
La cinta métrica es una herramienta básica de medición, es necesaria para la obtención de medidas de elementos de una estructura o de un terreno con un área pequeña. Es importante conocer el sistema de medida que se usa. [16]

2.6. Metodología para el levantamiento topográfico y modelado en 3D.

2.6.1. Levantamiento Topográfico en campo.

a. El primer paso para un levantamiento es ubicar y nivelar la estación en punto estratégico, en este caso, es necesario referenciar la estación con el punto de la placa IGM, por ello, se realiza un arrastre para referenciarlo con las coordenadas mostradas en la tabla 2, del punto ubicado en la plazoleta de la Universidad Técnica de Machala.

Tabla 2: Coordenadas en la Universidad Técnica de Machala proporcionadas por el IGM


Coordena	Elevación (m)		
Norte (m)	Este (m)	Elevacion (m)	
9636669.854	620899.491	11.1540	

- b. Al tener nuestro punto de estación referenciado correctamente se procede a ingresar las coordenadas necesarias (ENZ) para empezar con la toma de datos topográficos. Se debe realizar los cambios de estación que sean necesarios con la finalidad de tomar todos los elementos del puente vehicular.
- c. Los puntos topográficos fueron tomados en cada conexión existente en el puente, en el caso de las conexiones altas de los arcos se utilizó una herramienta integrada en la estación total que permite tomar puntos sin el uso de prisma.

- d. Las alturas y los diámetros de los elementos estructurales fueron tomados con cinta y con un distanciometro.
- e. La toma de coordenadas realizada con la estación total, permitió obtener los datos mostrados en la tabla del anexo 1.

2.6.2. Modelado en el software Civil 3D.

Luego de tener los puntos topográficos tomados con la estación total, se exportan estos datos al programa Civil 3D, es importante configurar la hoja de trabajo en función de las coordenadas y unidades de medida que correspondan, en este caso necesitamos que nuestra hoja esté en coordenadas UTM 17-S y metros como unidad de medida.

Ilustración 2: Puntos exportados a Civil 3D

Fuente: Elaborado por el autor.

La referencia tomada con la estación total, en relación con las coordenadas de la placa IGM ubicada en la plazoleta de la Universidad Técnica de Machala permitió obtener las coordenadas de la localización del puente vehicular para empezar con el levantamiento topográfico. Para comprobar que los puntos topográficos tomados están en la zona correcta, se procedió a activar la pestaña de georreferenciación en el software de Civil 3D, constatando que la zona del proyecto es la correcta. Sin embargo, el mapa del programa cuenta con un desfase que no permite mostrar una ubicación precisa, aun así, podemos observar en la ilustración 3 que los puntos del levantamiento topográfico están en la zona correcta del proyecto.

Ilustración 3: Georreferenciación del proyecto.

Fuente: Elaborado por el autor.

El proceso del modelado en AutoCAD Civil 3D se realiza mediante el uso del comando 3DPOL que permite trazar la estructura del puente a través de líneas, uniendo los puntos topográficos tomados por la estación, dándole así forma a la estructura como se puede observar en la ilustración 4.

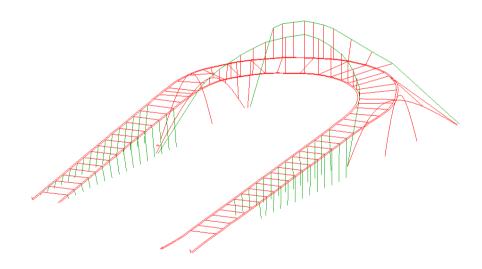


Ilustración 4: Modelado en Civil 3D

Fuente: Elaborado por el autor.

Finalmente, al tener la estructura del puente unidos con líneas procedemos a modelar los elementos estructurales con los diámetros correspondientes, esto se realiza utilizando la herramienta para la creación de sólidos en superficies de Civil 3D.

En el modelado 3D del puente vehicular se pueden observar las vigas de acero, los arcos principales y los arcos que sirven como soporte del puente.

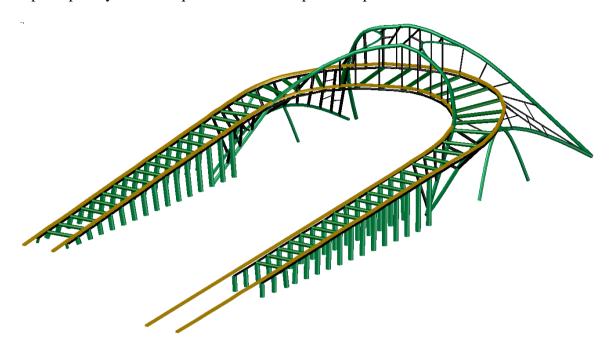


Ilustración 5: Modelado 3D del puente vehicular sin losa.

Fuente: Elaborado por el autor.

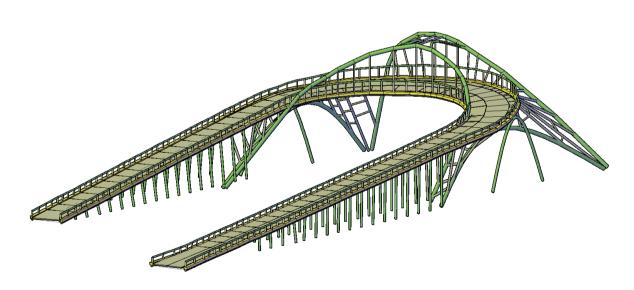


Ilustración 6: Modelado 3D del puente vehicular con losa.

Fuente: Elaborado por el autor.

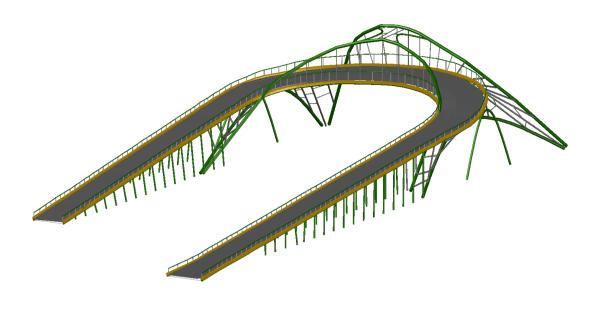


Ilustración 7: Modelado 3D del puente vehicular de la Universidad Técnica de Machala.

Fuente: Elaborado por el autor.

CONCLUSIONES

- En base a la información bibliográfica revisada en artículos científicos, especialmente en la revista de hormigón y acero, podemos concluir que los levantamientos topográficos son de gran importancia para contar con información de una estructura ya existente, datos fundamentales que sirven como una base para posteriores estudios y análisis del comportamiento de la estructura, evaluando su funcionalidad y seguridad.
- Se realizó el levantamiento topográfico con el uso de estación total, prisma, cinta y distanciometro; es así que se obtuvieron los datos necesarios como coordenadas, diámetros y alturas de los elementos estructurales del puente; es así que, con los datos tomados con cinta se obtuvo el perímetro de los tubos que variaban de 28 cm hasta 106 cm, los arcos principales contaban con un perímetro de 106 cm, los elementos bases verticales y vigas con 54 cm, las protecciones laterales de 28 cm y los otros arcos corresponden a 71 cm y 104 cm.
- Con el uso del software de Civil 3D se modeló el puente vehicular de la Universidad
 Técnica de Machala con medidas reales en función de la información topográfica
 levantada.

REFERENCIAS BIBLIOGRÁFICAS

- [1 Y. Herrera y M. Cabrera, «Metodología para el empleo de estaciones totales de serie LEICA
-] TPS 800 en trazados y estudios geométricos de obras viales,» Revista Científica Ingeniería Ciencia, Tecnología e Innovación, vol. 6, nº 2, pp. 31-38, 2019.
- [2 G. Delgado y C. Lucas, «Protecciones laterales vehiculares en puentes del Cantón Manta.
] Aplicabilidad de las Normas AASHTO,» *Dominio de las Ciencias*, vol. 5, nº 1, pp. 587-601, 2019.
- [3 C. Delgado, R. Rodríguez y W. Vera, «Comportamiento y seguridad estructural de puentes vehiculares en Manta,» *Polo del Conocimiento*, vol. 3, nº 22, pp. 112-125, 2018.
- [4 R. Chavez, G. Ríos y M. Trejo, «Distribución de cargas en puentes vehiculares para su] determinación de fallas,» *South Florida Journal of Development*, vol. 3, nº 1, pp. 1223-1237, 2022.
- [5 P. Tanner, «Standards for the Assessment of Existing Structures:Real Need or Caprice of Code Makers?,» *Hormigón y Acero*, vol. 72, nº 294/295, pp. 77-84, 2021.
- [6 Á. Navareño y E. Criado, «Inspección y rehabilitación de puentes atirantados en la red de carreteras del estado,» *Hormigón y Acero*, vol. 72, nº 294-295, pp. 163-175, 2021.
- [7 W. Velez, « Propuesta metodológica para el analisis de puentes vehiculares curvos formados por
] trabes de acero y losa de concreto,» Universidad Autonoma de Nuevo Leon, Nuevo León, 2012.
 [En línea]. Available: http://cdigital.dgb.uanl.mx/te/1080256494.PDF.
- [8 L. Acosto, F. Ojeda, E. Reyes, A. Cabrera, Y. Rodriguez y J. Cruz, «Poligono Patrón para el Desarrollo de la Topografía en la Gestión de Proyectos. Caso de estudio Universidad de Holguin,» *Dominio Científico*, vol. 8, nº 3, pp. 666-681, 2022.
- [9 O. Del Río, F. Gomez, N. López, J. Saenz y A. Espinoza, «Análisis comparativo de] levantamiento topográfico tradicional y tecnología de Drones,» Revista de Arquitectura e Ingeniería, vol. 14, nº 2, pp. 1-14, 2020.
- [1 F. Elivo y E. Molina, « Topgrafía de puentes y tuneles,» Universidad Nacional Pedro Henriquez
- 0] Ureña, Republica Dominicana, 2014. [En línea]. Available: https://repositorio.unphu.edu.do/bitstream/handle/123456789/831/Topografi%CC%81a%20de %20puentes%20y%20tuneles.pdf?sequence=1&isAllowed=y.
- [1 J. Pérez, G. López, N. Velázquez y I. López, «Evaluación de un prototipo de RPAS para el 1] levantamiento topográfico con imágenes RGB,» *Revista Ingeniería Agrícola*, vol. 11, nº 2, pp. 25-32, 2021.
- [1 J. Fuentes, Topografía, México: Tercer Milenio S.C., 2012.

2]

- [1 E. Aguero, A. Montilla y G. Valero, «Medición de puntos GPS por el método estático con equipo
- 3] diferencial. Una experiencia didáctica en el Instituto Pedagógico de Maturín,» *Tecné, episteme y didaxis: Revista de la Facultad de Ciencia y Tecnología*, nº 43, pp. 137-153, 2018.
- [1 E. Cano, M. Sanchez y J. Mesas, «Active geodetic network: application in topography,» DYNA,
- 4] vol. 85, n° 206, pp. 114-120, 2018.
- [1 V. Galeana, O. Chávez y G. Medellín, «On the measure of land subsidence throughout DEM and
- 5] orthomosaics using GPS and UAV,» *Ingeniería, investigación y tecnología*, vol. 22, nº 1, pp. 1-12, 2021.
- [1 L. Pulido, «Técnicas para un levantamiento arquitectónico,» Revista Oblicua, nº 11, pp. 19-27,
- 6] 2017.

ANEXOS

ANEXO 1: Anexo fotográfico del trabajo realizado en campo para el levantamiento topográfico del puente vehicular con estación total.

ANEXO 2: Anexo fotográfico del trabajo realizado en campo para la medición de diámetros, alturas y distancias de los elementos del puente vehicular con cinta.

ANEXO 3: Coordenadas de puntos topográficos del puente vehicular de la Universidad Técnica de Machala.

NUMERO	ABCISA	ORDENADA	ELEVACIÓN
0	620.899.491	9.636.669.854	11.154
1	620.604.000	9.636.688.000	12.000
2	620.822.875	9.636.592.922	13.452
3	620.613.083	9.636.688.900	12.121
4	620.613.087	9.636.688.821	12.436
5	620.614.234	9.636.692.110	12.108
6	620.614.307	9.636.692.379	12.441
7	620.613.013	9.636.688.651	12.435

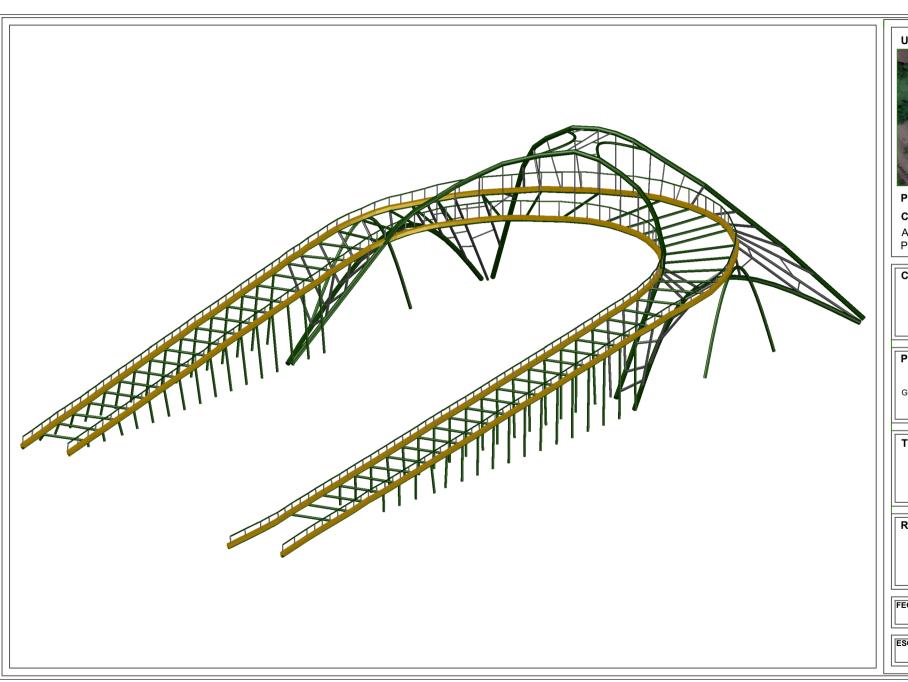
8	620.615.476	9.636.687.861	12.113
9	620.615.594	9.636.688.107	12.518
10	620.616.624	9.636.691.353	12.501
11	620.617.373	9.636.687.248	12.090
12	620.617.446	9.636.687.547	12.775
13	620.618.565	9.636.690.757	12.823
14	620.619.263	9.636.686.617	12.094
15	620.619.340	9.636.686.915	13.091
16	620.620.304	9.636.690.181	13.072
17	620.621.126	9.636.686.036	12.117
18	620.621.230	9.636.686.317	13.385
19	620.622.276	9.636.689.541	13.390
20	620.623.037	9.636.685.410	12.098
21	620.623.116	9.636.685.723	13.688
22	620.624.202	9.636.688.956	13.704
23	620.624.202	9.636.684.765	12.113
24	620.624.975	9.636.685.131	13.996
25	620.626.064	9.636.688.364	14.015
26	620.626.814	9.636.684.158	12.127
27	620.626.878	9.636.684.546	14.281
28	620.627.912	9.636.687.806	14.286
29	620.628.724	9.636.683.540	12.119
30	620.628.759		14.597
31	+	9.636.683.894 9.636.687.181	
	620.629.807		14.620
32	620.630.612	9.636.682.927	12.156
33	620.630.661	9.636.683.337	14.896
34	620.631.686	9.636.686.581	14.914 12.143
36	620.632.455		
	620.632.556	9.636.682.736	15.204
37	620.633.579	9.636.685.969	15.204
38	620.632.474	9.636.682.307	12.141
39	620.634.415	9.636.682.121	15.502
40	620.635.463	9.636.685.387	15.538
41	620.636.244	9.636.681.110	12.159
42	620.636.280	9.636.681.506	15.798
43	620.637.344	9.636.684.788	15.806
44	620.638.124	9.636.680.514	12.169
45	620.638.177	9.636.680.885	16.100
46	620.639.269	9.636.684.169	16.110
47	620.639.998	9.636.679.887	12.202
48	620.640.056	9.636.680.277	16.379
49	620.641.142	9.636.683.584	16.423
50	620.641.863	9.636.679.262	12.209
51	620.641.932	9.636.679.644	16.696
52	620.643.045	9.636.683.008	16.704
53	620.643.764	9.636.678.647	12.193

54	620.643.780	9.636.679.006	16.983
55	620.645.045	9.636.682.387	16.995
56	620.644.687	9.636.678.743	17.149
57	620.645.911	9.636.682.111	17.129
58	620.645.717	9.636.678.407	17.290
59	620.646.947	9.636.681.836	17.302
60	620.647.843	9.636.681.568	17.421
61	620.647.860	9.636.681.556	17.428
62	620.647.525	9.636.677.675	17.621
63	620.648.496	9.636.681.329	17.497
64	620.648.402	9.636.677.327	17.756
65	620.649.623	9.636.681.006	17.686
66	620.649.304	9.636.676.947	17.930
67	620.650.741	9.636.680.607	17.834
68	620.649.990	9.636.676.553	18.053
69	620.651.866	9.636.680.231	18.021
70	620.652.910	9.636.679.842	18.176
70	620.650.634	9.636.676.144	18.169
72	620.651.385	9.636.675.637	18.295
73	620.653.977	9.636.679.275	18.355
74	620.652.016	9.636.675.081	18.429
75	620.654.905	9.636.678.669	18.504
76	620.652.540	9.636.674.580	18.526
77	620.655.794	9.636.677.980	18.696
78	620.653.010	9.636.674.032	18.590
79	620.656.595	9.636.677.198	
80		9.636.673.301	18.835
	620.653.555		18.670
81	620.657.284	9.636.676.316	18.940
	620.654.142	9.636.672.229	18.758
83	620.658.545	9.636.674.414	19.157
84	620.654.862	9.636.670.754	18.870
85	620.659.171	9.636.673.422	19.277
86	620.655.438	9.636.669.294	18.949
87	620.659.971	9.636.671.725	19.398
88	620.655.623	9.636.667.855	18.991
89	620.660.757	9.636.669.076	19.519
90	620.655.716	9.636.666.646	18.994
91	620.661.141	9.636.668.025	19.577
92	620.655.617	9.636.665.015	19.065
93	620.661.093	9.636.664.740	19.664
94	620.655.251	9.636.663.297	19.125
95	620.660.401	9.636.661.340	19.747
96	620.654.563	9.636.661.848	19.136
97	620.659.614	9.636.659.598	19.771
98	620.653.647	9.636.660.618	19.138
99	620.657.879	9.636.657.221	19.764

100	620.652.667	9.636.659.436	19.089
101	620.656.525	9.636.655.790	19.728
102	620.651.438	9.636.658.423	19.028
103	620.654.959	9.636.654.442	19.641
104	620.649.800	9.636.657.473	18.945
105	620.653.642	9.636.653.658	19.557
106	620.648.733	9.636.656.961	18.892
107	620.650.730	9.636.652.414	19.314
108	620.647.068	9.636.656.391	18.780
109	620.648.489	9.636.651.984	19.073
110	620.645.290	9.636.656.084	18.584
111	620.645.141	9.636.651.709	18.675
112	620.643.650	9.636.656.038	18.371
113	620.643.964	9.636.651.771	18.517
114	620.642.231	9.636.656.156	18.211
115	620.641.788	9.636.652.058	18.226
116	620.640.135	9.636.656.536	17.942
117	620.639.392	9.636.652.817	17.947
118	620.638.233	9.636.657.059	17.698
119	620.637.039	9.636.653.764	17.650
120	620.636.409	9.636.657.691	17.454
121	620.635.166	9.636.654.321	17.433
122	620.634.440	9.636.658.273	17.201
123	620.633.267	9.636.655.092	17.180
124	620.632.547	9.636.658.932	16.937
125	620.631.460	9.636.655.695	16.937
126	620.630.733	9.636.659.545	16.685
127	620.629.569	9.636.656.312	16.687
128	620.628.784	9.636.660.205	16.438
129	620.627.724	9.636.656.938	16.438
130	620.626.930	9.636.660.827	16.209
131	620.625.802	9.636.657.592	16.202
132	620.625.085	9.636.661.470	15.959
133	620.623.970	9.636.658.178	15.952
134	620.623.167	9.636.662.105	15.717
135	620.622.066	9.636.658.811	15.710
136	620.621.316	9.636.662.721	15.467
137	620.620.210	9.636.659.510	15.458
138	620.619.444	9.636.663.342	15.227
139	620.618.297	9.636.660.138	15.235
140	620.617.533	9.636.664.005	14.991
141	620.616.449	9.636.660.752	14.991
142	620.615.642	9.636.664.608	14.762
143	620.614.519	9.636.661.372	14.722
144	620.613.802	9.636.665.244	14.496
145	620.612.690	9.636.661.994	14.491

146	620.611.938	9.636.665.859	14.260
147	620.610.813	9.636.662.613	14.265
148	620.610.029	9.636.666.479	14.021
149	620.608.935	9.636.663.227	14.019
150	620.608.157	9.636.667.125	13.767
151	620.607.108	9.636.663.845	13.776
152	620.606.298	9.636.667.757	13.551
153	620.605.129	9.636.664.522	13.521
154	620.604.431	9.636.668.372	13.300
155	620.603.270	9.636.665.138	13.294
156	620.602.545	9.636.669.024	13.071
157	620.601.361	9.636.665.813	13.087
158	620.600.706	9.636.669.611	12.845
159	620.599.513	9.636.666.371	12.840
160	620.598.712	9.636.670.265	12.619
161	620.597.607	9.636.667.016	12.607
162	620.595.743	9.636.667.630	12.400
163	620.595.747	9.636.667.631	12.400
164	620.596.937	9.636.670.796	12.391
165	620.594.972	9.636.671.525	12.194
166	620.593.858	9.636.668.227	12.178
167	620.593.638	9.636.672.830	11.899
168	620.591.079	9.636.672.848	12.090
169	620.591.723	9.636.669.124	11.829
170	620.590.595	9.636.669.087	12.147
170	620.590.640	9.636.669.263	12.147
172	620.590.040	9.636.672.710	12.101
173	620.610.315	9.636.666.276	11.981
173	620.613.679	9.636.665.162	11.969
175	620.611.691	9.636.665.801	11.909
176	620.615.531	9.636.664.588	11.971
177	620.617.392	9.636.663.982	11.978
178	620.619.288	9.636.663.298	11.962
179	620.621.166	9.636.662.602	11.971
180	620.622.992	9.636.662.041	11.979
181	620.624.892	9.636.661.326	11.987
182	620.626.792	9.636.660.740	11.995
183	620.628.663	9.636.660.080	12.004
184	620.630.502	9.636.659.479	12.004
185	620.632.450	9.636.658.933	12.020
186	620.634.199	9.636.658.033	12.200
187	620.681.958	9.636.660.930	12.692
189	620.644.369	9.636.681.024	11.174
190	620.643.023	9.636.683.170	11.174
191	620.644.545	9.636.682.190	11.530
192	620.652.024	9.636.681.787	11.139
174	020.032.024	7.030.001.707	11.137

193	620.659.657	9.636.676.514	11.477
194	620.666.985	9.636.674.949	11.373
195	620.668.621	9.636.673.833	11.452
196	620.669.058	9.636.673.165	11.495
197	620.633.604	9.636.655.219	12.179
199	620.636.561	9.636.656.344	12.178
200	620.636.440	9.636.655.408	12.176
201	620.635.972	9.636.656.277	12.172
202	620.642.584	9.636.652.549	12.263
203	620.650.576	9.636.649.729	12.312
204	620.659.539	9.636.646.022	12.279
205	620.657.200	9.636.648.327	12.276
206	620.660.476	9.636.645.931	12.293
207	620.659.773	9.636.646.008	12.288
208	620.616.670	9.636.691.622	12.113
209	620.614.202	9.636.692.397	12.435
210	620.618.573	9.636.691.029	12.090
211	620.620.481	9.636.690.455	12.094
212	620.622.338	9.636.689.855	12.117
213	620.624.260	9.636.689.264	12.098
214	620.626.159	9.636.688.714	12.113
215	620.628.068	9.636.688.109	12.127
216	620.629.984	9.636.687.513	12.119
217	620.631.881	9.636.686.925	12.156
218	620.633.737	9.636.686.358	12.143
219	620.635.574	9.636.685.778	12.130
220	620.637.530	9.636.685.162	12.159
221	620.639.410	9.636.684.564	12.169
222	620.641.302	9.636.683.996	12.202
223	620.643.186	9.636.683.431	12.209
224	620.645.094	9.636.682.837	12.193


ANEXO 4: Diámetros de los elementos estructurales del puente.

DESCRIPCIÓN		PERIMETRO CM	DIAMETRO CM
Tubos bases verticales.		54	17,19

1	 	
Arcos laterales simples.	71	22,6
Arcos laterales medianos.	104	33,1
Arcos principales	106	33,74
Tubos principales inclinados de color gris.	55	17,5

Tubo base para la losa del puente.	55	17,5
Baranda de protección	28	9
Vigas	54	17,19

ANEXO 5: Planos del modelado en 3d del puente vehicular de la Universidad Técnica de Machala.

UBICACIÓN

PROVINCIA: EL ORO CANTÓN: MACHALA

Av. Panamericana Km 5 1/2 vía a

Pasaje

CONTENIDO:

VISTA GENERAL DEL PUENTE VEHICULAR SIN LOSA.

PROYECTO:

LEVANTAMIENTO DE DATOS TOPOGRÁFICOS DE LOS ELEMENTOS GEOMÉTRICOS DEL PUENTE VEHICULAR DE LA UNIVERSIDAD TÉCNICA DE MACHALA

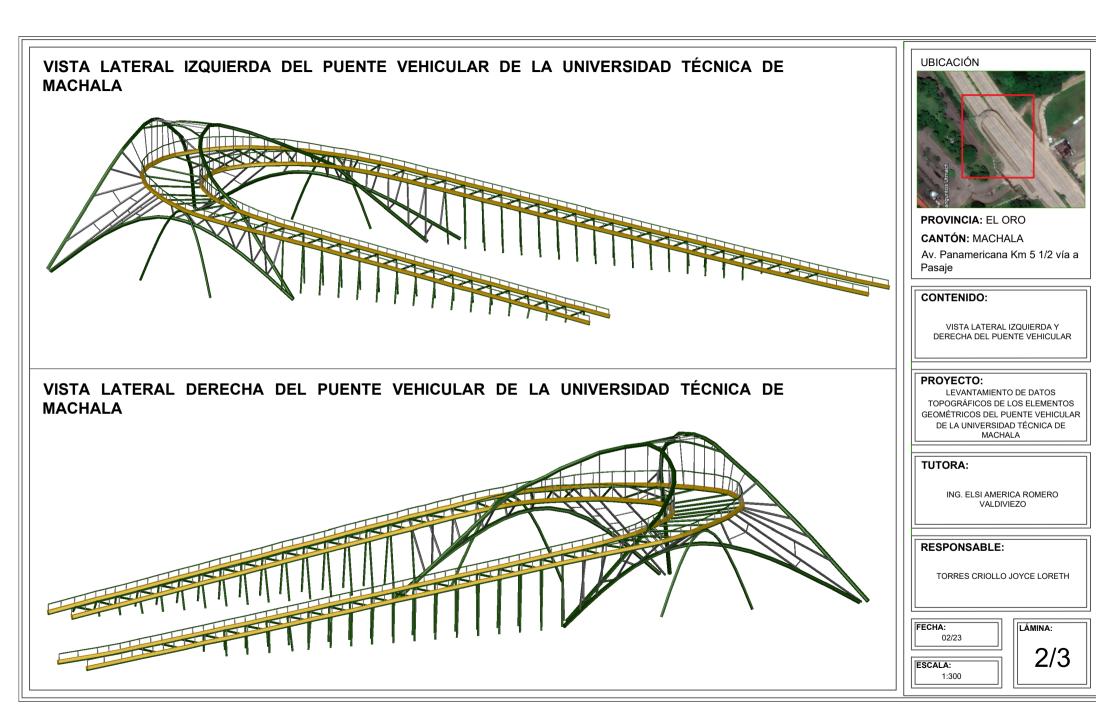
TUTORA:

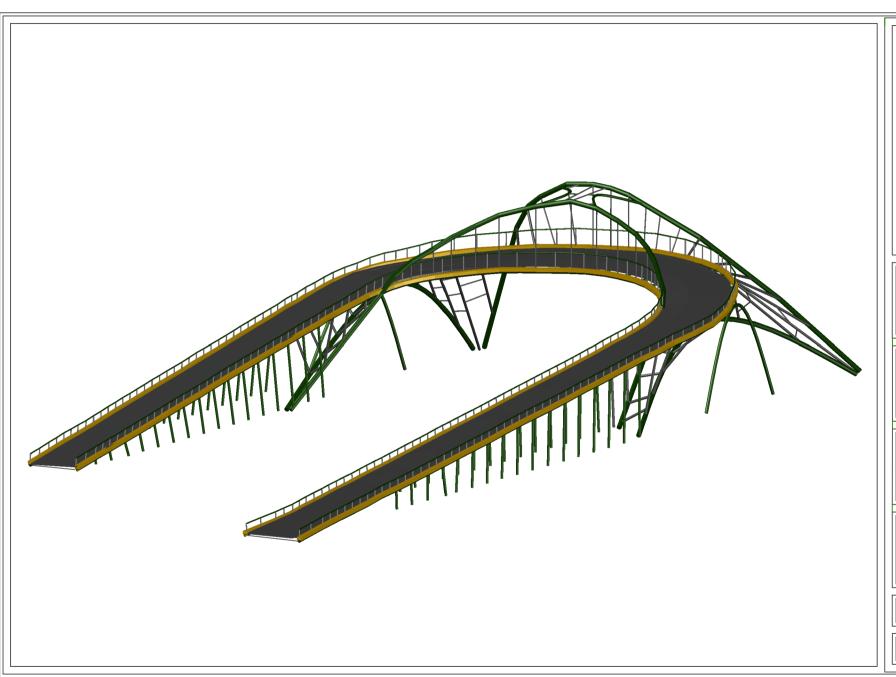
ING. ELSI AMERICA ROMERO VALDIVIEZO

RESPONSABLE:

TORRES CRIOLLO JOYCE LORETH

FECHA:


02/23


ESCALA:

1:250

1/3

LÁMINA:

UBICACIÓN

PROVINCIA: EL ORO CANTÓN: MACHALA

Av. Panamericana Km 5 1/2 vía a Pasaje

CONTENIDO:

VISTA GENERAL DEL PUENTE VEHICULAR CON LOSA.

PROYECTO:

LEVANTAMIENTO DE DATOS
TOPOGRÁFICOS DE LOS ELEMENTOS
GEOMÉTRICOS DEL PUENTE VEHICULAR
DE LA UNIVERSIDAD TÉCNICA DE
MACHALA

TUTORA:

ING. ELSI AMERICA ROMERO VALDIVIEZO

RESPONSABLE:

TORRES CRIOLLO JOYCE LORETH

FECHA:

02/23

ESCALA:

LÁMINA:

3/3