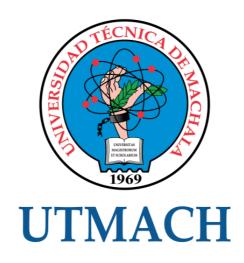


FACULTAD DE INGENIERÍA CIVIL CARRERA DE INGENIERÍA CIVIL

SOFTWARE QUE REALICE EL DISEÑO OPTIMIZADO DE LÍNEAS DE CONDUCCIÓN DE AGUA DETERMINANDO DIÁMETROS, INVOLUCRANDO VÁLVULAS DE AIRE Y DESAGÜES

MOREIRA CORDOVA ROGER MICHAEL INGENIERO CIVIL

MACHALA 2020



FACULTAD DE INGENIERÍA CIVIL CARRERA DE INGENIERÍA CIVIL

SOFTWARE QUE REALICE EL DISEÑO OPTIMIZADO DE LÍNEAS DE CONDUCCIÓN DE AGUA DETERMINANDO DIÁMETROS, INVOLUCRANDO VÁLVULAS DE AIRE Y DESAGÜES

> MOREIRA CORDOVA ROGER MICHAEL INGENIERO CIVIL

> > MACHALA 2020

FACULTAD DE INGENIERÍA CIVIL

CARRERA DE INGENIERÍA CIVIL

EXAMEN COMPLEXIVO

SOFTWARE QUE REALICE EL DISEÑO OPTIMIZADO DE LÍNEAS DE CONDUCCIÓN DE AGUA DETERMINANDO DIÁMETROS, INVOLUCRANDO VÁLVULAS DE AIRE Y DESAGÜES

MOREIRA CORDOVA ROGER MICHAEL INGENIERO CIVIL

AGUIRRE MORALES FREDY ALEJANDRO

MACHALA, 03 DE DICIEMBRE DE 2020

MACHALA 03 de diciembre de 2020

PROGRAMA DISENO LINEAS DE IMPULSION

por Roger Moreira

Fecha de entrega: 13-nov-2020 03:32p.m. (UTC-0500)

Identificador de la entrega: 1445321444

Nombre del archivo: Roger_Moreira.docx (2.62M)

Total de palabras: 5460 Total de caracteres: 27240

CLÁUSULA DE CESIÓN DE DERECHO DE PUBLICACIÓN EN EL REPOSITORIO DIGITAL INSTITUCIONAL

El que suscribe, MOREIRA CORDOVA ROGER MICHAEL, en calidad de autor del siguiente trabajo escrito titulado Software que realice el diseño optimizado de líneas de conducción de agua determinando diámetros, involucrando válvulas de aire y desagües, otorga a la Universidad Técnica de Machala, de forma gratuita y no exclusiva, los derechos de reproducción, distribución y comunicación pública de la obra, que constituye un trabajo de autoría propia, sobre la cual tiene potestad para otorgar los derechos contenidos en esta licencia.

El autor declara que el contenido que se publicará es de carácter académico y se enmarca en las dispociones definidas por la Universidad Técnica de Machala.

Se autoriza a transformar la obra, únicamente cuando sea necesario, y a realizar las adaptaciones pertinentes para permitir su preservación, distribución y publicación en el Repositorio Digital Institucional de la Universidad Técnica de Machala.

El autor como garante de la autoría de la obra y en relación a la misma, declara que la universidad se encuentra libre de todo tipo de responsabilidad sobre el contenido de la obra y que asume la responsabilidad frente a cualquier reclamo o demanda por parte de terceros de manera exclusiva.

Aceptando esta licencia, se cede a la Universidad Técnica de Machala el derecho exclusivo de archivar, reproducir, convertir, comunicar y/o distribuir la obra mundialmente en formato electrónico y digital a través de su Repositorio Digital Institucional, siempre y cuando no se lo haga para obtener beneficio económico.

Machala, 03 de diciembre de 2020

MÓREIRA CORDOVA ROGER MICHAEL

0705/205177

PROGRAMA DISENO LINEAS DE IMPULSION

INFORME DE ORIGINALIDAD

INDICE DE SIMILITUD

9%

8%

FUENTES DE INTERNET

2%

PUBLICACIONES

5%

TRABAJOS DEL ESTUDIANTE

ENCONTRAR COINCIDENCIAS CON TODAS LAS FUENTES (SOLO SE IMPRIMIRÁ LA FUENTE SELECCIONADA)

1%

★ repositorio.uladech.edu.pe

Fuente de Internet

Excluir citas

Excluir bibliografía

Apagado

Apagado

Excluir coincidencias

Apagado

RESUMEN

Los sistemas de agua potable son los encargados de suplir el líquido vital a la población; su demanda, complejidad y costo se incrementan en forma paralela al crecimiento urbanístico, exigiendo cada vez más prestaciones en términos de cobertura y calidad. El problema abordado es la falta de un software que facilita el diseño optimizado de la conducción de agua a impulsión considerando los caudales, diámetros mínimos alturas, costo de la energía eléctrica e inferencias prácticas al obtener un diseño eficiente y seguro. Se aplica una metodología deductiva al caracterizar las relaciones entre las variables a mediante el lenguaje C Sharp a través de la discretización de los criterios de mediante la programación orientada a objetos; en los resultados se presenta una interfaz gráfica que permite obtener las consideraciones tanto técnicas como económicas del funcionamiento hidráulico de una conducción a impulsión desde la captación al reservorio acorde al contexto local para reducir los tiempos de diseño y mejorar su implementación; al ingresar la eficiencia de la bomba, caudal requerido, diferencia de cotas y diámetro el software arroja las curvas de inversión, precio bomba, tubería e itera hasta converger en el menor monto posible dando la mejor combinación de valores posibles al construir la conducción analizada.

Palabras Clave: Conducción, C Sharp, diseño, optimización, costo, agua potable.

ABSTRACT

Drinking water systems are in charge of supplying the vital liquid to the population; its demand, complexity and cost increases in parallel with urban growth, demanding more and more benefits in terms of coverage and quality. The problem addressed is the lack of software that facilitates the optimized design of the impulsion water conduction considering the flow rates, minimum diameters, heights, cost of electrical energy and practical inferences when obtaining an efficient and safe design. A deductive methodology is applied when characterizing the relationships between variables using the C Sharp language through the discretization of the criteria through object-oriented programming; The results present a graphical interface that allows obtaining both technical and economic considerations of the hydraulic operation of an impulse conduction from the intake to the reservoir according to the local context to reduce design times and improve its implementation; When entering the efficiency of the pump, required flow, height difference and diameter, the software returns the investment curves, pump price, pipeline and iterates until converging in the smallest amount possible, giving the best possible combination of values when constructing the analyzed pipeline.

Keywords: Driving, C Sharp, design, optimization, cost, drinking water.

ÍNDICE DE CONTENIDOS

RE	ESUMEN	- 1 -
ΑB	BSTRACT	- 2 -
ĺΝΙ	DICE DE CONTENIDOS	- 3 -
ĺΝΙ	DICE DE ILUSTRACIONES	- 4 -
ĺΝΙ	DICE DE TABLAS	- 4 -
1.	INTRODUCCIÓN	- 5 -
2.	DESARROLLO	- 6 -
2	2.1 Marco Teórico	- 6 -
2	2.1 Redes de agua potable	- 6 -
2	2.2 Conducción a impulsión	- 6 -
2	2.3 Consideraciones de diseño	- 6 -
2	2.4 Variables y ecuaciones de diseño	- 7 -
2	2.5 C Sharp	- 9 -
2	2.6 Diseño optimizado	- 9 -
2	2.7 Elementos en conducciones a impulsión	- 10 -
2	2.2 Caso Práctico	- 10 -
	2.2.1 Pregunta a Resolver:	- 11 -
	2.2.2 Consideraciones de diseño	- 11 -
	2.2.3 Datos de ingreso	- 11 -
	2.2.4 Proceso de calculo	- 12 -
	2.2.5 Programación en C #	- 14 -
	2.2.6 Resultados	- 16 -
3.	CONCLUSIONES	- 18 -
4.	REFERENCIAS BIBLIOGRÁFICAS	- 19 -
5.	ANEXOS	- 21 -

ÍNDICE DE ILUSTRACIONES

Ilustración 1. Ejemplo de programación de solución óptima basada en objetos	- 9 -
Ilustración 2. Optimización de costo en función de las iteraciones para cump	lir las
condiciones de diseño	- 10 -
Ilustración 3. Diagrama de diseño de la conducción a impulsión	- 13 -
Ilustración 4. Declaración de variables e ingreso de datos en C #	- 14 -
Ilustración 5. Compilación de ecuaciones y variables en C#	- 15 -
Ilustración 6. Llamado de fórmulas y exportar datos en C Sharp	- 15 -
Ilustración 7. Cálculo de costo óptimo en C Sharp	- 17 -
ÍNDICE DE TABLAS	
Tabla 1. Iteraciones en el proceso de cálculo del costo de la conducción a impulsión	- 13 -
Tabla 2. Comparación de resultados en el cálculo del costo de la conducción a impu	lsión -
17 -	
ÍNDICE DE ANEXOS	
Anexo 1. Lista de precios por metro lineal en función del diámetro en tuberías Plast	igama
(PVC)	- 22 -
Anexo 2. Lista de precios de bombas comerciales de acuerdo a la potencia (Hp)	- 23 -
Anexo 3. Interfaz gráfica del programa de cálculo para conducciones en C Sharp	- 24 -
Anexo 4. Prueba de cálculo y resultados en diseño optimizado de conducciones a imp	ulsión
	- 25 -
Anexo 5. Bombas Centrífugas Marca HASA consideradas en el cálculo de la conduc	ción a

1. INTRODUCCIÓN

- 26 -

- 33 -

Anexo 6. Características de las bombas Hidráulica Alsina S.A

impulsión

El agua potable es una de las necesidades básica del ser humano, permite sobre llevar sus tareas cotidianas, actividades recreativas e industriales al ser la materia prima de múltiples procesos, disolvente universal y principal recurso para la vida; por ello, la ingeniería civil se encarga de satisfacer las necesidades sociales, particularmente el abastecimiento y distribución del agua a través de sistemas de conducción desde la fuente de captación hasta los consumidores.

En el Ecuador la competencia de administrar el agua es pública; al ser un derecho social es su responsabilidad financiar y gestionar su distribución [1]; por lo tanto, reducir costos para incrementar su accesibilidad paralelamente a sus prestaciones es responsabilidad del ingeniero civil justificando el desarrollo del presente proyecto al potenciar su diseño a través de medios computacionales.

Las redes a impulsión son aquellos que operan mediante bombas, las cuales suministran la presión necesaria para mover el caudal entra una diferencia de niveles; sus principales variables son caudal de bombeo, altura, diámetro, velocidad económica y costo de la energía eléctrica [2].

Los medios computaciones facilitan agilizar los procesos de cálculos, análisis numéricos y optimizar diseños en una variedad de campos; en el caso de la ingeniería es común emplear software para emular el comportamiento de sistemas en forma numérica/analítica, en este caso el lenguaje C Sharp basado en objetos facilita simular la conducción a través de variables e interrelaciones que modelan su desempeño hidráulico [3].

La problemática donde incursiona el proyecto es la falencia de un software para obtener un diseño económico y eficiente de la conducción de agua potable a impulsión; en el marco de la sociedad contemporánea, crisis sanitaria y tendencias de sostenibilidad en el mundo post Covid 19 se presente la necesidad de optimizar los diseños en obras e infraestructura civiles a fin de incrementar su accesibilidad, mejorar la calidad de vida de la población y evitar congestionamientos en los centros hospitalarios.

El objetivo general del estudio es:

Elaborar un software de cálculo de sistema de bombeo mediante el lenguaje C Sharp para optimizar el diseño la conducción de agua tratada a impulsión.

Los objetivos específicos del proyecto son:

- Caracterizar las consideraciones técnicas y económica que intervienen en el diseño de conducciones a impulsión mediante una revisión literaria para describir el proceso de cálculo en Excel.
- Diseñar una interfaz gráfica en el lenguaje C# mediante la programación orientada a

- objetos para ejecutar el proceso de cálculo de una conducción desde la captación de agua potable hasta el reservorio.
- Implementar un software de cálculo de conducciones a impulsión mediante C# para mejorar eficiencia y reducir esfuerzos en su diseño

2. DESARROLLO

2.1 Marco Teórico

Comprende la fundamentación del trabajo investigativo, permite argumentar y sustentar el desarrollo del proyecto en base a criterios u opiniones de autores versados en la temática.

2.1 Redes de agua potable

Son un conjunto de tuberías que transportan el agua desde la planta de tratamiento hasta los domicilios; pueden funcionar a gravedad (energía potencial) o mediante bombas (energía eléctrica), su misión es mantener un suministro de agua constante para satisfacer las necesidades de la sociedad.

Uno de los principales objetivos del diseño de sistemas de agua potable, es optimizar su costo al reducir el diámetro de las tuberías al cumplir con las condiciones de caudal, presión y velocidades en cada nodo [4].

2.2 Conducción a impulsión

Son aquellas que emplean la presión proporcionada por bombas para impulsar el agua potable, desde la captación del agua tratada hasta el reservorio a una altura suficiente para distribuir el agua a los consumidores por gravedad.

Las etapas de optimización de una red pueden ser tres, la topología de la red en función de la topografía, diseño de la red en base a los diámetros de tuberías o planificación operacional a nivel de válvulas y bombas [5]. En este caso se optimiza en relación al diseño de red y costos operativos del sistema.

2.3 Consideraciones de diseño

Existen variables, condiciones geográficas, características de la población y factores culturales que influyen en el consumo de agua potable; sin embargo, la más relevantes según [6]:

- Población al final del periodo de diseño
- Consumo medio y máximo horario
- Dotación de acuerdo a región y demografía
- Clima y topografía del área donde se construirá y donde se abastecerá
- Costo de la energía eléctrica y tiempo de bombeo

En el software se debe incluir los porcentajes de fugas, bombas comerciales en sus potencia, caudales y curvas de operación, diámetros comerciales y materiales más usados en el contexto socioeconómico local.

2.4 Variables y ecuaciones de diseño

De acuerdo con la normativa técnica vigente [7], las directrices del diseño son: Dotación, para clima cálido de más de 50 000 habitantes mayor a 230 L/hab/día

$$Q = 0.2787 * C * D^{2.63} * S^{0.54}$$

Donde:

Q= Caudal de la conducción en m^3/s

C= Coeficiente de Hazen Williams

D= Diámetro de la tubería en m

S= Pendiente de la conducción en m/m

$$hf = \frac{10.678 * L}{D^{4.87}} \left(\frac{Q}{C}\right)^{1.852}$$

Donde:

Hf= Pérdida de carga en metros de columna de agua m

D= Diámetro interno de la tubería en m

L= Longitud de la tubería en m

C= Coeficiente de fricción del material (Hazen Williams)

Q= Caudal en m^3/s

$$hi = Ki * \frac{v^2}{2g}$$

Donde:

Hi= Pérdida de carga por accesorios en m

Ki= Coeficiente de pérdidas del accesorio

g= Aceleración de la gravedad m^2/s

v= Velocidad del agua en m/s

$$D = K * X^{\frac{1}{4}} * Ob^{1/2}$$

Donde:

K= Factor de seguridad 1.3

D= Diámetro interno de la tubería en m

X= Número de horas de bombeo

Qb= Caudal de bombeo en m^3/s

$$Pb(Hp) = \frac{Q\rho g h_b}{746 * e}$$

Donde:

Pb= Potencia de la bomba en Hp

 ρ = Densidad del agua en kg/m^3

hb= cabeza de la bomba m

e= Eficiencia de la bomba

g= Gravedad 9.8 m^2/s

El tanque de almacenamiento debe tener el volumen suficiente para garantizar la presión requerida en la red, los caudales una presión mínima de 10 m en los puntos más críticos de la red; la velocidad promedio en 1.5 m/s y el caudal de diseño deberá considerar fugas o conexiones clandestinas en la red.

De acuerdo con [8] las ecuaciones para calcular la red de bombeo y su costo son:

$$\frac{Pa}{\rho} + Za + \frac{Va^2}{2g} + hp = \frac{Pb}{\rho} + Zb + \frac{Vb^2}{2g} + hf$$

Donde:

Pa y Pb= Presiones en el punto inicial y final del tramo en m

ρ= Peso específico del fluido en Kg/m3

Va v Vb= Velocidades medias en el punto inicial v final en m/s

Za y Zb= Altura de los puntos respecto al nivel de referencia en m

g= gravedad en m/s2

Hp= Presión de bombeo en m

Hf= Pérdidas de carga en m

$$CCA = (FRC * (\sum_{1}^{n} Tub + \sum_{1}^{n} Cbomb + Cest + Cequip + Celec) + \sum_{1}^{n} CEnergía$$

Donde:

CCA= Costo anualizado total de la alternativa

FRC= Factor de recuperación del capital

Cbomb= Costo del equipo de bombeo

Cest= Costo de construcción de la infraestructura

Cequip=Costo del equipamiento mecánico y accesorios de la estación de bombeo

Celec= Costo de las instalaciones eléctricas e instrumentos de bombeo

Cenergía = Costo anuales de operación en función del KW/h

2.5 C Sharp

Es un lenguaje de programación orientado a *objetos*, se deriva C+ y Java siendo la versión mejorada para Microsoft siendo compatible con Excel, Word u otras herramientas informáticas de Windows facilitando su implementación a través de una interfaz gráfica, que representa a las variables y modela su comportamiento [9].

```
Set fabricas = new Set(Domain.Any, "fabricas");
Set distribuidores = new Set(Domain.Any, "distribuidores");

Parameter demanda = new Parameter(Domain.Integer, "demanda", distribuidores);
demanda.SetBinding(getDemanda().AsEnumerable(), "valor", "distribuidor");

Parameter costos = new Parameter(Domain.Integer, "costos", fabricas, distribuidores);
costos.SetBinding(getCostos().AsEnumerable(), "valor", "fabrica", "distribuidor");

Parameter disponibilidad = new Parameter(Domain.Integer, "disponibilidad", fabricas);
disponibilidad.SetBinding(getDisponibilidad().AsEnumerable(), "valor", "fabrica");

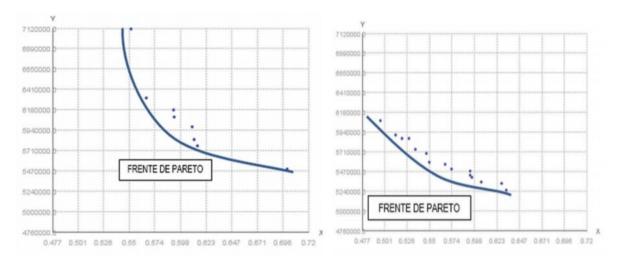
model.AddParameters(demanda, costos, disponibilidad);

Decision x = new Decision(Domain.RealNonnegative, "x", fabricas, distribuidores);
model.AddDecision(x);
```

Ilustración 1. Ejemplo de conjuntos y parámetros de decisión empleados para resolver problema del transporte en C #

Fuente: [10]

Las ventajas de usar este programa es el mejor uso de la memoria Ram, menor tiempo de compilación, fácil detección de errores y compatibilidad con otros lenguajes o códigos; además su interfaz gráfica es amigable con el usuario gestionada en ventanas, lo cual lo hace atractivo para desarrollar el software de cálculo.


2.6 Diseño optimizado

Las redes de agua potable representan un costo significativo en su construcción; siendo financiadas por los recursos del Estado es imperioso optimizar su diseño al mejorar tanto sus prestaciones como su comportamiento hidráulico; en lo cual se destaca el diámetro, presiones, velocidades, diámetros comerciales y ahorro en contraste con obras similares.

En este estudio los criterios de optimización son:

- Minimizar el tiempo de cálculo en conducciones a impulsión
- Encontrar el diámetro mínimo comercial acorde al caudal, presión y velocidades en los nodos

- Reducir los esfuerzos de diseño al automatizar las operaciones en C#
- Determinar el menor costo del proyecto en relación a un conjunto de soluciones óptimas

Ilustración 2. Optimización de costo en función de las iteraciones para cumplir las condiciones de diseño

Fuente: [11]

2.7 Elementos en conducciones a impulsión

Los componentes principales son la captación, tubería de succión e impulsión, bomba, altura de los equipos, tanque elevado o reservorio, filtros, válvulas, tuberías de conducción y nodos de la red en relación a la demanda.

En el diseño del programa se parte de un esquema básico, donde se expresa las variables a ingresas, catálogo de bombas comerciales, material de la tubería e implementos necesarios en el cálculo del sistema a impulsión.

Los requerimientos de la bomba son caudales, altura y óptima eficiencia; que se obtienen de las curvas de caudal contra altura o caudal contra eficiencia diseñadas por el fabricante para satisfacer las condiciones de diseño de la red [12]; se debe tomar en cuenta que del costo de la bomba se deriva su potencia, mantenimiento u otros rubros que encarecen la red a impulsión, haciendo hincapié en determinar la mejor bomba disponible acorde a los criterios de cada diseño.

2.2 Caso Práctico

La conducción de agua es un conjunto de conductos, obras de arte y accesorios destinados a transportar el agua cruda procedente de la fuente de abastecimiento, desde el lugar de la captación hasta los tanques de almacenamiento o la planta de tratamiento.

Es de suma importancia que los diseños de conducciones de agua sean optimizados con

el objeto de lograr un funcionamiento hidráulico eficiente con el mínimo costo posible.

No existe en nuestro medio un software que permita realizar el diseño optimizado de líneas de conducción de agua, que determine los diámetros mínimos de las tuberías, ubicación de válvulas de aire y desagüe que permita obtener diseños eficientes y seguros.

2.2.1 Pregunta a Resolver:

Con estos antecedentes el estudiante debe plantear un programa de computación que permita diseñar una conducción de agua de manera óptima tanto para flujo estacionario como transitorio, de igual manera que indique y dimensione las válvulas de aire y desagüe y que permita mostrar el funcionamiento hidráulico de acuerdo a la operación de las válvulas.

El estudiante debe tener conocimientos de programación.

¿Cuáles son las consideraciones técnicas y económicas que deben tenerse en cuenta para elaborar un software que permita el diseño optimizado de conducciones de agua a bombeo?

2.2.2 Consideraciones de diseño

Los coeficientes de Hazen Williams para los materiales disponibles son:

Asbesto-Cemento: 135

® Policloruro de Vinilo (PVC): 125

® Acero Galvanizado: 140

Los datos pre establecidos son:

[®] Aceleración de la gravedad= 9.81 m^2/s

[®] Densidad del agua $\rho = 997kg/m^3$

De acuerdo a la normativa vigente, se parte de:

Velocidad mínima= 0.6 m/s y Velocidad Máxima: 3 m/s

2.2.3 Datos de ingreso

Los valores de partida para el procese de cálculo de la conducción son:

Eficiencia de la bomba: %

® Longitud de la conducción: m

® Diferencia de alturas: m

® Caudal requerido: m3/s

Los valores del coeficiente K en los accesorios considerados en el cálculo son:

Válvula de globo (abierta)= 10.0

Válvula en ángulo (abierta)= 5.0

Válvula de cheque (abierta)= 2.5

Válvula de compuerta (totalmente abierta) = 0.20

- Válvula de compuerta con ¾ de apertura= 1.00 a 1.15
- Válvula de compuerta con ½ de apertura= 5.6
- Válvula de compuerta con ¼ de apertura= 24.0
- © Codo de radio corto (r/d=1) =0.90
- © Codo de radio mediano= 0.75 a 0.80
- $^{\circ}$ Codo de gran radio (r/d=1.5) = 0.60
- [®] Codo de 45°=0.40-0.42
- ® Retorno (curva en U) =2.2
- ® Tee en sentido recto= 0.30
- ® Tee a través de la salida lateral= 1.80
- ® Unión= 0.30
- Ye de45° en sentido recto= 0.30
- Ye de 45° salida lateral= 0.80
- ® Entrada recta a tope= 0.50
- Entrada con boca acampanada= 0.10
- ® Entrada con tubo reentrante= 0.90
- ® Salida= 1.0

La finalidad del programa es estimar la Inversión Óptima en \$USD, diámetro óptimo de la tubería y potencia de la bomba; de modo que se pueda elegir fácilmente las alternativas comerciales al ser la opción más favorable.

2.2.4 Proceso de calculo

Con los datos de partida se calculan las variables de potencia, diámetro y pérdidas hasta equilibrar la potencia requerida con un dímetro comercial que el menor costo posible; mediante iteraciones sabiendo que a mayor diámetro menor pérdida y a mayor potencia mayor costo.

Los datos de partida son: Eficiencia de la bomba 75%, conducción de 100 m, diferencia de cotas 15 m, caudal 0.1 m3/s con los siguientes accesorios:

- 1 Válvula de purga, 1 válvula de admisión
- ¶
 1 Válvula de desahogo, 1 válvula tipo check
 §
- ® 2 Entrada-Salida

Ilustración 3. Diagrama de diseño de la conducción a impulsión

Fuente: El Autor

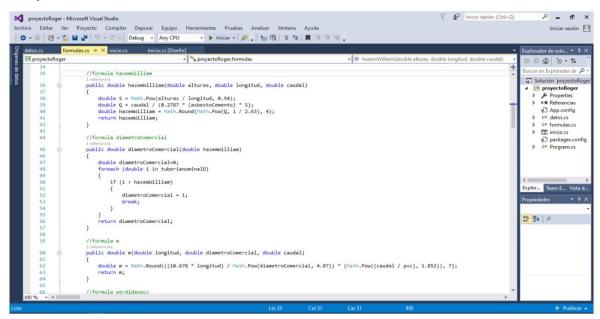
Los pasos del cálculo son:

- 1) De la ecuación del caudal, se despeja el diámetro resultando 0.192 m
- 2) Se redondea al diámetro comercial superior, siendo el valor de partida 0.228 m
- Al igual la presión al inicio y final de la conducción se despeja la carga en metros de columna de agua que debe aportar la bomba, siendo 16.10 m
- 4) Las pérdidas según el caudal hf son 0.66 m
- 5) Las pérdidas por accesorios hi son 0.35 m
- 6) La potencia requerida es 27.98 Hp, redondeando a 30 Hp como valor comercial
- 7) Se evalúan los resultados en forma iterativa hasta equilibrar el diámetro con la potencia de la bomba para obtener el menor costo posible

Tabla 1. Iteraciones en el proceso de cálculo del costo de la conducción a impulsión

Velocidad m/s	Tubería m	Presión m.c.a	Potencia Requerida	Bomba requerida (HP)	\$ Ducto	\$ Bomba	Costo Total
3,45	0,1922	23,161	40,49	50	2000	8000	10000
2,21	0,2402	17,909	31,31	50	2750	8000	10750
1,39	0,3024	16,010	27,99	30	3000	3258	6258
1,09	0,341	15,584	27,24	30	3250	3258	6508
0,86	0,3842	15,340	26,82	30	3500	3258	6758
0,56	0,4754	15,130	26,45	30	3750	3258	7008
0,35	0,599	15,046	26,30	30	3950	3258	7208
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Fuente: El Autor


Se aprecia que, a partir de la décima iteración, los valores tienden a cero demostrando que los valores encontrados son los más óptimos satisfaciendo las condiciones de diseño y los criterios técnicos de la conducción por bombeo. En total se necesitan \$6258 USD para conducir 0.1 m3/s con un diámetro comercial de 0.32 m mediante una bomba de 30 Hp.

Es importante recordar que en las conducciones a bombeo es común que el aire se quede atrapado en las tuberías, causando esfuerzos innecesarios e incrementar consumo de la bomba; por ende, en la práctica se debe purgar frecuentemente la tubería mediante las válvulas de purga sabiendo que el aqua contiene 2% de aire disuelto [13].

2.2.5 Programación en C#

Se desarrolla el programa con el IDE de Microsoft Visual Studio 2015, aplicando los siguientes pasos:

 Se crean dos clases de datos y un formulario, el primero variable tipo número que llama a los valores que debe ingresar el usuario: eficiencia, diferencia de cotas, longitud y caudal

Ilustración 4. Declaración de variables e ingreso de datos en C #

Fuente: El Autor

2) En la clase *fórmulas* se compilan todas las ecuaciones necesarias para los cálculos y se relacionan con las variables que ingresa el usuario; dichas formulas son Hf de Hazen William, Diámetro, Potencia de bomba, Costos de los equipos, entre otras.

Esto permite que el programa sea más ágil, sea fácil llamar a los formularios y el código optimice uso de recursos, reflejando rápidamente la tabla y gráfico.

```
00000
                          return diametroComercial:
57
58
59
                                                                                                                                                                                                                         □ proyectoRoger

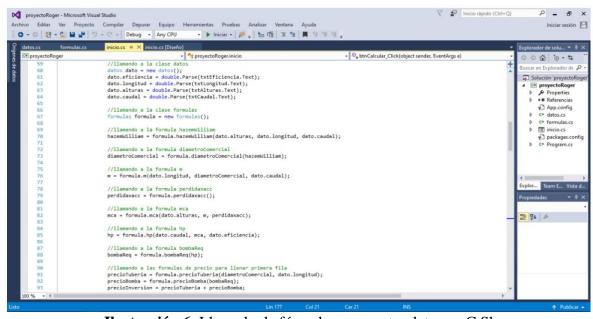
▷ ▶ Properties

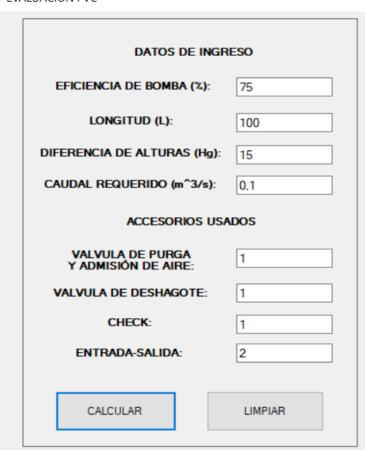
▷ ►■ Referencias
                    //formula m
                    2referencies
public double m(double longitud, double diametroComercial, double caudal)
{
60
61
62
63
64
65
66
                         double m = Math.Round(((10.678 * longitud) / Math.Pow(diametroComercial, 4.87)) * (Math.Pow((caudal / pvc), 1.852)), 7);
return m;
                                                                                                                                                                                                                             App.config
c" datos.cs
c" formulas.cs
inicio.cs
                    //formula perdidaxacc
                                                                                                                                                                                                                              packages.config
                    public double perdidaxacc() {
                                                                                                                                                                                                                              C" Program.cs
67
68
69
70
71
72
73
74
                         double complemento = ((Math.Pow(velocidadMinima, 2) / (2 * gravedad)));
double perdidaxacc = Math.Round((valvuPurga * complemento) + (valvuDesha * complemento), 7);
return perdidaxacc;
                                                                                                                                                                                                                      Explor... Team E... Vista d
75
76
77
78
79
80
81
                    public double mca(double alturas, double m, double perdidaxacc)
                         double mca = Math.Round((alturas + (pa / (p * gravedad)) + (Math.Pow(velocidadMinima, 2) / (2 * gravedad)) + m + perdidaxacc), 7);
                    referencia
public double hp(double caudal, double mca, double eficiencia)
{
                         double hp = Math.Round(((caudal * p * gravedad * mca) / (746 * (eficiencia / 100))), 7);
return hp;
```

Ilustración 5. Compilación de ecuaciones y variables en C #

Fuente: El Autor

3) Luego se concatena las formulas con las variables tipo texto y tipo número al exportar los datos en una tabla, de modo que a medida que las iteraciones convergen en el menor costo se gráfica las curvas el comportamiento económico de la conducción.




Ilustración 6. Llamado de fórmulas y exportar datos en C Sharp

Fuente: El Autor

4) Luego se corre el programa, corrige errores y verifica su funcionamiento, para finalmente ser exportado en formato ejecutable .EXE en la carpeta ProyectoRoger/Bin/Debug facilitando ser usado en cualquier ordenador.

2.2.6 Resultados

El proceso de cálculo explicado en Excel se compila en C Sharp, dando mejores resultados al tener un motor más potente e iterar a mayor velocidad; además su compatibilidad son Microsoft facilita ser ejecutable en cualquier ordenador.

EVALUACIÓN PVC

Ilustración 7. Ingreso de datos en el programa

Fuente: El Autor

Se ingresa los mismos datos del proceso de cálculo en Excel para establecer una comparación entre los resultados; se aprecia que la interfaz es amigable con el usuario indicando los valores a introducir acorde a las variables que delinean el diseño de una conducción a impulsión.

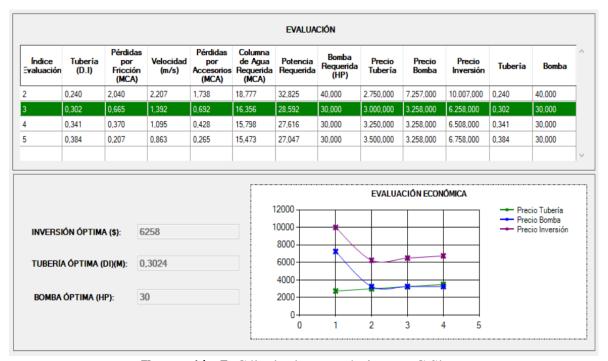


Ilustración 7. Cálculo de costo óptimo en C Sharp

Fuente: El Autor

Con los mismos datos del Excel se obtiene un presupuesto óptimo de \$6258 USD con una bomba de 27.98 Hp y diámetro de 0.32 m; en comparación a \$6258 USD, tubería de 0.3024 m y bomba de 30 Hp al conducir los mismos 0.1 m^3/s ; lo cual expresa la exactitud del programa, verificando que automatiza los procesos de cálculo y diseño, gracias a su interfaz que itera tanto en forma analítica como gráfica al converger las variables a través de curvas (Ver *ilustración 7*).

Tabla 2. Comparación de resultados en el cálculo del costo de la conducción a impulsión

	EXCEL	C SHARP
Diámetro	0.3024 m	0.3024 m
Potencia Bomba	27.98 HP	30 HP
Inversión Total	\$ 6258 USD	\$6258 USD

Fuente: El Autor

La designación de los valores se fundamenta en dar con la inversión menor, sin perder demasiada carga por fricción o incremento en costo por mayor diámetro; debido a que las relaciones entre las variables no son lineales, se realizan mediante iteraciones hasta converger en el punto donde se cuenta con la carga para mover el caudal requerido al menor costo posible en la relación potencia-diámetro.

El programa C # tiene un motor más potente y dinámico que Excel, además es capaz de retroalimentar las variables en función de las curvas a diferencia de Excel; por ende, se concluye que su respuesta es mejor y más eficiente.

En Latinoamérica la demanda de agua potable se incrementa con el crecimiento poblacional; debido a la escasez de recursos económicos es imperiosos optimizar costos, haciendo que contar con una herramienta computacional que ayude a simplificar el diseño de las conducciones ayudaría a mejorar la calidad del servicio a futuro[14].

3. CONCLUSIONES

Las consideraciones técnicas para diseñar la conducción son caudales, eficiencia de bomba, diferencia de alturas y longitud de la tubería; los factores económicos más relevantes en el cálculo son precio de la tubería por metro lineal, costo de la bomba y diámetro comercial que son los rubros más significativos al construir la conducción desde la captación hacia el reservorio.

La programación orientada a objetos en C Sharp resulta ágil y práctica, gracias a sus semejanzas con Windows y Microsoft facilitando compilar el proceso de cálculo en C# con mayor eficiencia; además el llamar a las variables numéricas en relación a las curvas optimiza recursos computacionales, a la vez que reduce tiempo de cálculo.

La interfaz gráfica en C# es amigable con el usuario y ejecuta el proceso de cálculo es fracciones de segundo; lo cual satisface la necesidad de contar con un programa capaz de optimizar el diseño de conducciones a impulsión; además es configurable para actualizar los costos de tubería y bombas año a año, considerando los cambios en el contexto socioeconómico y al ser portable es fácil de ejecutar en cualquier ordenador o institución que lo requiera.

La conducción es una de las obras más complejas, debido al requerimiento de pendiente para funcionar por gravedad; por tal razón, en zonas planas como la costa ecuatoriana es necesario diseñarlas mediante impulsión; haciendo hincapié en la falencia de un software para agilizar el diseño mediante medios computacionales.

Se aconseja diseñar programas similares que ayuden a controlar los sobre precios en las obras civiles, haciendo que la solución óptima con el mejor costo posible sea el presupuesto referencial; mejorando la accesibilidad a la población y combatiendo la corrupción que ha deteriorado a la ética profesional del ingeniero civil.

4. REFERENCIAS BIBLIOGRÁFICAS

- [1] S. J. Gonzaga Añazco, N. A. Castro Perdomo y G. A. López Calvajar, «EL ABASTO DE AGUA POTABLE Y LA SALUD COMUNITARIA. MACHALA, ECUADOR. ESTUDIO DE CASO,» Revista Universidad y Sociedad; Vol 9, No 1, vol. 9, nº 1, pp. 218-223, 2017.
- [2] R. Torres-Hugues y A. L. Fresquet-Blanco, «Captación de Iluvia para descarga de inodoros en edificio alto en el Vedado, La Habana,» ING. HIDRÁULICA Y AMBIENTAL, vol. XL, nº 1, pp. 122-135, 2019.
- [3] J. García, Á. Gil y E. Sánchez, «Desarrollo de una arquitectura de software para el robot móvil Lázaro,» *Ingeniare. Revista chilena de ingeniería*, vol. 26, nº 3, pp. 376-390, 2018.
- [4] V. Tzatchkov y V. Alcocer-Yamanaka, «Sectorización basada en la teoría de los grafos de redes de distribución de agua potable con una y con múltiples fuentes,» *Instituto Mexicano de Tecnología del Agua*, vol. 10, nº 6, pp. 197-221, 2019.
- [5] G. Pereyra, D. Pandolfi y N. Villagra, «Diseño y optimización de redes de distribución de agua utilizando algoritmos genéticos,» *Informe Científico Técnico UNPA*, vol. 9, nº 1, pp. 37-63, 2017.
- [6] B. Lárraga, «Diseño del sistema de agua potable para Augusto Valencia, Cantón Vínces, Provincia de Los Ríos,» Pontificia Universidad Católica del Ecuador, Quito, 2016.
- [7] CÓDIGO ECUATORIANO DE LA CONSTRUCCIÓN DE PARTE IX OBRAS SANITARIAS, «NORMAS PARA ESTUDIO Y DISEÑO DE SISTEMAS DE AGUA POTABLE Y DISPOSICIÓN DE AGUAS RESIDUALES PARA POBLACIONES MAYORES A 1000 HABITANTES,» Secretaría del Agua, Quito, 1992.
- [8] C. Martins-Alves y J. Martínez-Rodríguez, «Diseño óptimo de lineas de aducción por bombeo,» ING. HIDRÁULICA Y AMBIENTAL, vol. XXXVI, nº 1, pp. 111-124, 2015.

- [9] E. Duque-García, «Propuesta de arquitectura cliente de la aplicación de interfaz de usuario del sistema xavia ris 2.0,» *Revista Cubana de Informática Médica*, vol. 8, nº 1, pp. 30-45, 2016.
- [10] O. Arboleda y S. Sotelo, «Construcción de aplicativos de programación por restricciones en Microsoft Solver Foundation y Windows Azure,» Scientia et Technica , vol. 21, nº 4, pp. 336-341, 2016.
- [11] E. Pino, A. Valle, F. Condori, M. Jesús, E. Chavarri y L. Alfaro, «Diseño Óptimo de Redes de Distribución de Agua Usando Un Software Basado En Microalgoritmos Genéticos Multiobjetivos,» Revista Iberoamericana del Agua, vol. 4, nº 1, pp. 6-23, 2017.
- [12] J. Joaquín Cuarenta, J. Rodríguez, G. Carreño, J. Ortiz, M. Pérez-Sánchez y P. López-Jiménez, «Generación de energía mediante una bomba funcionando como turbina en una conducción de abastecimiento de agua de Guanajuato,» *Acta Universitaria*, vol. 29, pp. 1-14, 2019.
- [13] O. Pozos-Estrada, O. Fuentes, R. E. Sánchez y F. De Luna, «Análisis de los efectos del aire atrapado en transitorios hidráulicos en acueductos a bombeo,» *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería*, vol. 33, nº 1-2, pp. 79-89, 2017.
- [14] J. Lizcano, S. Bolaños y R. Medina, «Metamodelo del sistema de regulación de la demanda de agua potable en horizontes de largo plazo,» *Ingeniare. Revista chilena de* ingeniería, vol. 27, nº 3, pp. 361-374, 2019.
- [15] Hidráulica Alsina S.A, «Catálogo de Bombas Centrífugas, sumergibles, riego y de procesos químicas,» Bombas HASA, Barcelona, 2020.

5. ANEXOS

DESCRIPCION	UNITARIO	\$/m
TUB u-PVC UZ 50mm X 6m 0,80MPa(116psi)	11,84	1,97
TUB u-PVC UZ 50mm X 6m 1,00Mpa(145psi)	13,62	2,27
TUB u-PVC UZ 50mm X 6m 1,25MPa(181psi)	18,02	3,00
TUB u-PVC UZ 63mm X 6m 0,80MPa(116psi)	17,50	2,92
TUB u-PVC UZ 63mm X 6m 1,00MPa(145psi)	19,80	3,30
TUB u-PVC UZ 63mm X 6m 1,25MPa(181psi)	24,10	4,02
TUB u-PVC UZ 63mm X 6m 1,60MPa(232psi) *	31,12	5,19
TUB u-PVC UZ 75mm X 6m 0,63MPa(91psi)*	18,92	3,15
TUB u-PVC UZ 75mm X 6m 0,80MPa(116psi)	23,21	3,87
TUB u-PVC UZ 75mm X 6m 1,00Mpa(145psi)	28,97	4,83
TUB u-PVC UZ 75mm X 6m 1,25MPa(181psi)*	35,62	5,94
TUB u-PVC UZ 90mm X 6m 0,50MPa(73psi) *	23,26	3,88
TUB u-PVC UZ 90mm X 6m 0,63MPa(91psi)	25,88	4,31
TUB u-PVC UZ 90mm X 6m 0,80MPa(116psi)	32,06	5,34
TUB u-PVC UZ 90mm X 6m 1,00Mpa(145psi)	39,78	6,63
TUB u-PVC UZ 90mm X 6m 1,25MPa(181psi)	46,64	7,77
TUB u-PVC UZ 110mm X 6m 0,50MPa(73psi) *	31,74	5,29
TUB u-PVC UZ 110mm X 6m 0,63MPa(91psi)	37,28	6,21
TUB u-PVC UZ 110mm X 6m 0,80MPa(116psi)	45,38	7,56
TUB u-PVC UZ 110mm X 6m 1,00Mpa(145psi)	56,56	9,43
TUB u-PVC UZ 110mm X 6m 1,25MPa(181psi)	71,40	11,90
TUB u-PVC UZ 160mm X 6m 0,50MPa(73psi) *	67,02	11,17
TUB u-PVC UZ 160mm X 6m 0,63MPa(91psi)	80,90	13,48
TUB u-PVC UZ 160mm X 6m 0,80MPa(116psi)	96,71	16,12
TUB u-PVC UZ 160mm X 6m 1,00Mpa(145psi)	129,15	21,53
TUB u-PVC UZ 160mm X 6m 1,25MPa(181psi)	151,87	25,31
TUB u-PVC UZ 200mm X 6m 0,50MPa(73psi) *	103,65	17,28
TUB u-PVC UZ 200mm X 6m 0,63MPa(91psi)	131,25	21,88
TUB u-PVC UZ 200mm X 6m 0,80MPa(116psi)	155,60	25,93
TUB u-PVC UZ 200mm X 6m 1,00Mpa(145psi)	195,43	32,57
TUB u-PVC UZ 200mm X 6m 1,25MPa(181psi)	246,86	41,14
TUB u-PVC UZ 250mm X 6m 0,50MPa(73psi) *	159,95	26,66
TUB u-PVC UZ 250mm X 6m 0,63MPa(91psi)	188,53	31,42
TUB u-PVC UZ 250mm X 6m 0,80MPa(116psi)	239,40	39,90
TUB u-PVC UZ 250mm X 6m 1,00Mpa(145psi)	296,26	49,38
TUB u-PVC UZ 250mm X 6m 1,25MPa(181psi)	377,06	62,84
TUB u-PVC UZ 315mm X 6m 0,50MPa(73psi) *	255,36	42,56
TUB u-PVC UZ 315mm X 6m 0,63MPa(91psi)	302,24	50,37
TUB u-PVC UZ 315mm X 6m 0,80MPa(116psi)	395,01	65,84
TUB u-PVC UZ 315mm X 6m 1,00Mpa(145psi)	485,78	80,96

TUB u-PVC UZ 315mm X 6m 1,25MPa(181psi)	621,44	103,57
TUB u-PVC UZ 355mm X 6m 0,50MPa(73psi) *	384,04	64,01
TUB u-PVC UZ 355mm X 6m 0,63MPa(91psi)	415,96	69,33
TUB u-PVC UZ 355mm X 6m 0,80MPa(116psi)	568,58	94,76
TUB u-PVC UZ 355mm X 6m 1,00Mpa(145psi)	694,26	115,71
TUB u-PVC UZ 355mm X 6m 1,25MPa(181psi) *	901,74	150,29
TUB u-PVC UZ 400mm X 6m 0,50MPa(73psi) *	439,90	73,32
TUB u-PVC UZ 400mm X 6m 0,63MPa(91psi) *	525,00	87,50
TUB u-PVC UZ 400mm X 6m 0,80MPa(116psi) *	716,21	119,37
TUB u-PVC UZ 400mm X 6m 1,00MPa(145psi) *	944,63	157,44
TUB u-PVC UZ 400mm X 6m 1,25MPa(181psi) *	1074,31	179,05
TUB u-PVC UZ 500mm X 6m 0.63MPa(91psi) *	952,61	158,77
TUB u-PVC UZ 500mm X 6m 0.80MPa(116psi) *	1102,50	183,75
TUB u-PVC UZ 500mm X 6m 1.00MPa(145psi) *	1267,82	211,30
TUB u-PVC UZ 500mm X 6m 1.25MPa(181psi) *	1539,14	256,52
TUB u-PVC UZ 630mm X 6m 0.63MPa(91psi) *	1806,00	301,00
TUB u-PVC UZ 630mm X 6m 0.80MPa(116psi) *	2089,50	348,25
TUB u-PVC UZ 630mm X 6m 1.00MPa(145psi) *	2257,50	376,25
TUB u-PVC UZ 630mm X 6m 1.25MPa(181psi) *	2835,00	472,50

Anexo 1. Lista de precios por metro lineal en función del diámetro en tuberías Plastigama (PVC)

Potencia (hp)	Precio	Potencia	Precio	Potencia	Precio
	\$USD	(hp)	\$USD	(hp)	\$USD
1	150	1800	180000	4500	450000
2	250	1900	190000	4600	460000
5	300	2000	200000	4700	470000
10	1000	2100	210000	4800	480000
15	2000	2200	220000	4900	490000
20	2500	2300	230000	5000	500000
25	3000	2400	240000	5100	510000
30	3500	2500	250000	5200	520000
50	8000	2600	260000	5300	530000
75	9000	2700	270000	5400	540000
100	10000	2800	280000	5500	550000
200	20000	2900	290000	5600	560000
300	30000	3000	300000	5700	570000
400	40000	3100	310000	5800	580000
500	50000	3200	320000	5900	590000
600	60000	3300	330000	6000	600000
700	70000	3400	340000	6100	610000
800	80000	3500	350000	6200	620000
900	90000	3600	360000	6300	630000
1000	100000	3700	370000	6400	640000
1100	110000	3800	380000	6500	650000
1200	120000	3900	390000	6600	660000
1300	130000	4000	400000	6700	670000
1400	140000	4100	410000	6800	680000
1500	150000	4200	420000	6900	690000
1600	160000	4300	430000	7000	700000
1700	170000	4400	440000	7100	710000

Anexo 2. Lista de precios de bombas comerciales de acuerdo a la potencia (Hp)

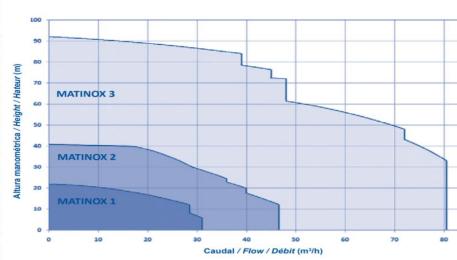
	=9													
EV	ALUACIÓN PVC												-	
	DATOS DE INGR	RESO						EVALUACI	ÓN					
	EFICIENCIA DE BOMBA (%):		Índice Evaluación	Tubería (D.I)	Pérdidas por Fricción (MCA)	Velocidad (m/s)	Columna de Agua Requerida (MCA)	Potencia Requerida	Bomba Requerida (HP)	Precio Tubería	Precio Bomba	Precio Inversión	Tubería	Bor
	LONGITUD (L):													
	DIFERENCIA DE ALTURAS (Hg):													
	CAUDAL REQUERIDO (m^3/s):													
	ACCESORIOS USA	ADOS					,							
	VALVULA DE PURGA Y ADMISIÓN DE AIRE:									EVALUACIO	ÓN ECONÓM		Precio T	
	VALVULA DE DESHAGOTE:		INVERSI	ÓN ÓPTIMA	(\$):								Precio Ir	
	CHECK:		TURERÍA	Á ÓPTIMA (E)I)(M)-									
	ENTRADA-SALIDA:		1022		.,,,,,.									
	CALCULAR	LIMPIAR	ВОМВА	ÓPTIMA (HI	P):									

Anexo 3. Interfaz gráfica del programa de cálculo para conducciones en C Sharp

Anexo 4. Prueba de cálculo y resultados en diseño optimizado de conducciones a impulsión

Anexo 5. Bombas Centrífugas Marca HASA consideradas en el cálculo de la conducción a

BOMBAS CENTRÍFUGAS / CENTRIFUGAL PUMPS / POMPES CENTRIFUGES _


impulsión

Modelo	0-4	Р	2		I (A)		ç	ð						Altura	a manoi	métrica	/ Heigh	t / Hate	ur (m)			
Model Modèle	Cod.	kW	CV	1 ~ 230V	3 ~ 230V	3 ~ 400V	Asp	lmp		10	15	20	25	30	35	40	45	50	55	60	65	70
NIZA 4.2 M	7584	0,26	0,35	2,4	-	-	1"	1"		4000	3300	1200										
NIZA 4.3 M	7586	0,37	0,5	3,3	-	-	1"	1"		4500	3800	3400	2500	1600								
NIZA 4.4 M	7588	0,55	0,75	3,9	-	-	1"	1"		4800	4200	4000	3500	2800	2100	300						
NIZA 4.5 M	7602	0,75	1	5,0	-	-	1"	1"		5000	4500	4200	3800	3300	2800	2200	1600	500				
NIZA 4.5 T	7603	0,75	1	-	3,3	1,9	1"	1"		5000	4500	4200	3800	3300	2800	2200	1600	500				
NIZA 6.3 M	7604	0,6	0,8	4,0	-	-	1"	1"	<u>-</u>	5500	5100	4600	3900	2800	1000							
NIZA 6.3 T	7605	0,6	0,8	-	2,8	1,6	1"	1"	Débit (I/h)	5500	5100	4600	3900	2800	1000							
NIZA 6.4 M	7590	0,75	1	4,6	-	-	1"	1"	Déb	5700	5400	5000	4600	4200	3800	3000	1500					
NIZA 6.4 T	7591	0,75	1	-	3,4	2,0	1"	1"	ow /	5700	5400	5000	4600	4200	3800	3000	1500					
NIZA 6.5 M	7592	0,96	1,3	6,0	-	-	1"	1"	/ Flo	6000	5700	5400	5100	4800	4400	4100	3400	2700	1200			
NIZA 6.5 T	7593	0,96	1,3	-	4,1	2,4	1"	1"	Caudal	6000	5700	5400	5100	4800	4400	4100	3400	2700	1200			
NIZA 6.6 M	7606	1,1	1,5	7,0	-	-	1"	1"	Cau	6200	6000	5800	5500	5200	4800	4400	4000	3600	3200	2500	1400	
NIZA 6.6 T	7607	1,1	1,5	-	4,8	2,8	1"	1"		6200	6000	5800	5500	5200	4800	4400	4000	3600	3200	2500	1400	
NIZA 10.3 M	7594	0,75	1	6,1	-	-	1 1/4"	1 1/4"		9200	8500	7400	6500	5200	4200	2000						
NIZA 10.3 T	7595	0,75	1	-	4,3	2,4	1 1/4"	1 1/4"		9200	8500	7400	6500	5200	4200	2000						
NIZA 10.4 M	7596	1,1	1,5	7,7	-	-	1 1/4"	1 1/4"		9800	9200	8400	7600	6800	5900	5100	4000	2500	500			
NIZA 10.4 T	7597	1,1	1,5	-	5,2	3,1	1 1/4"	1 1/4"		9800	9200	8400	7600	6800	5900	5100	4000	2500	500			
NIZA 10.5 M	7598	1,5	2	9,5	-	-	1 1/4"	1 1/4"		10500	9800	9100	8400	7900	7200	6500	5800	5100	4200	2300	600	
NIZA 10.5 T	7599	1,5	2	-	6,8	4,0	1 1/4"	1 1/4"		10500	9800	9100	8400	7900	7200	6500	5800	5100	4200	2300	600	
NIZA 10.6 T	7600	2,2	3	-	8,0	4,6	1 1/4"	1 1/4"			10600	10200	9600	9400	8700	8200	7600	7000	6400	5700	5000	440

Modelo		Р	2		I (A)		Ç	ð						Altura n	nanomét	rica / He	ight / Ha	teur (m)			
Model Modèle	Cod.	kW	CV	1 ~ 230V	3 ~ 230V	3 ~ 400V	Asp	Imp		15	20	25	30	35	40	45	50	55	60	65	70
HMI 2/40 M	1520	0,55	0,75	3,4	-	-	1"	1"		3800	3550	3000	1900	500							
HMI 2/50 M	1521	0,55	0,75	3,4	-	-	1"	1"			3800	3600	2950	2400	1300	500					
HMI 2/60 M	1522	0,75	1	4,5	-	-	1"	1"				3900	3550	3200	2500	1900	1000	300			
HMI 2/60 T	1523	0,75	1	-	3,2	1,9	1"	1"				3900	3550	3200	2500	1900	1000	300			
HMI 4/40 M	1524	0,75	1	4,5	-	-	1 1/4"	1"	(h)		7200	6500	5000	2000							
HMI 4/40 T	1525	0,75	1	-	3,2	1,9	1 1/4"	1"	Débit (I/h)		7200	6500	5000	2000							
HMI 8/30 M	1665	0,55	0,75	3,9	-	-	1 1/4"	1"	_	7200	6200	4800	3000								
HMI 8/30 T	1666	0,75	1	-	2,5	1,4	1 1/4"	1"	I Flow	7200	6200	4800	3000								
HMI 8/40 M	1667	0,90	1,2	5,3	-	-	1 1/4"	1"	Caudal	8100	7400	6600	5800	4800	3300	1200					
HMI 8/40 T	1668	1,1	1,5	-	3,2	1,9	1 1/4"	1"	Ca	8100	7400	6600	5800	4800	3300	1200					
HMI 8/50 M	1669	1,1	1,5	6,2	-	-	1 1/4"	1"			7900	7300	6600	6150	5200	4200	3000	1200			
HMI 8/50 T	1670	1,1	1,5	-	3,7	2,2	1 1/4"	1"			7900	7300	6600	6150	5200	4200	3000	1200			
HMI 8/60 M	1671	1,3	1,8	7,3	-		1 1/4"	1"				7900	7400	6900	6400	5850	5100	4450	3200	1800	
HMI 8/60 T	1672	1,5	2	-	5,0	2,9	1 1/4"	1"				7900	7400	6900	6400	5850	5100	4450	3200	1800	
HMI 8/70 M	1673	1,5	2	8,2	-	-	1 1/4"	1"				8100	7650	7200	6750	6350	5900	5300	4650	3900	3000
HMI 8/70 T	1674	1,5	2		5,5	3,2	1 1/4"	1"				8100	7650	7200	6750	6350	5900	5300	4650	3900	3000

Mod	lelo / Mo	odel / Modèle		P1	Р	2		I (A)		Q	ď							С	audal.	/ Flow	/ Déb	it (m³/l	n)			
AISI 304	Cod.	AISI 316 L	Cod.	kW	kW	cv	1 ~ 230V	3 ~ 230V	3 ~ 400V	Asp	Imp		0	1,2	1,7	2,3	2,8	3,4	3,9	4,4	5,5	6,5	7,5	8,5	9,5	11
3HM04S T	7100	3HM04N T	7900	0,47	0,3	0,4	-	2,0	1,1	1"	1"		29,1	27,8	26,3	24,3	21,7	18,6	14,8	10,2						
3HM04S M	7101	3HM04N M	7901	0,57	0,5	0,7	2,5	-	-	1"	1"		29,5	28,7	27,3	25,5	23	20	16,1	11,8						
3HM05S T	7102	3HM05N T	7902	0,55	0,4	0,55	-	2,3	1,3	1"	1"		36,8 35,3 33,5 31 27,9 24,1 19,2 13,5													
3HM05S M	7103	3HM05N M	7903	0,63	0,5	0,7	2,9	-	-	1"	1"		36,6	35,2	33,4	31	27,9	24	19,1	13,7						
3HM06S T	7104	3HM06N T	7904	0,64	0,5	0,7	-	2,6	1,5	1"	1"		43,8 41,8 39,5 36,5 32,7 28,1 22,2 15,4													
3HM06S M	7105	3HM06N M	7905	0,7	0,5	0,7	3,1	-	-	1"	1"	43,5 41,5 39,3 36,2 32,3 27,5 21,7 15,1														
3HM07S T	7106	3HM07N T	7906	0,84	0,75	1	-	2,7	1,5	1"	1"	53,1 52,3 50,2 47,2 43,3 38,2 31,7 23,9														
3HM07S M	7107	3HM07N M	7907	0,85	0,55	0,75	4,0	-	-	1"	1"	E	E 51,7 50,1 47,6 44,3 40 34,5 27,7 20,1													
3HM09S T	7108	3HM09N T	7908	0,95	1,1	1,5	-	3,5	2,0	1"	1"	Hateur	68,5	67,6	65	61,2	56,2	49,7	41,4	31,5						
3HM09S M	7109	3HM09N M	7909	1,03	0,75	1	4,6	-	-	1"	1"	На	66	63,5	60,2	55,8	50,1	42,9	34,2	24,4						
5HM04S T	7110	5HM04N T	7910	0,68	0,5	0,7	-	2,6	1,5	11/4"	1"											9,8				
5HM04S M	7111	5HM04N M	7911	0,73	0,5	0,7	3,2	-	-	11/4"	1"	leig	29,3 27,4 26,5 25,6 24,7 23,5 21,1 18,1 14,4 9,8 29,2 27,4 26,5 25,5 24,6 23,5 21,1 18 14,1 9,7									9,7				
5HM05S T	7112	5HM05N T	7912	0,85	0,75	1	-	2,8	1,6	11/4"	1"	a / F	37,8			36,7	35,8	34,8	33,8	32,7	30	26,5	22	16,4		
5HM05S M	7113	5HM05N M	7913	0,96	0,75	1	4,4	-	-	11/4"	1"	étric	37,1			35,4	34,4	33,3	32,2	31	28,2	24,5	19,7	14,1		
5HM06S T	7114	5HM06N T	7914	1,02	1,1	1,5	-	3,6	2,1	11/4"	1"	mé	45,5			44,4	43,4	42,3	41,2	39,8	36,6	32,5	27,1	20,4		
5HM06S M	7115	5HM06N M	7915	1,08	0,75	1	4,8	-	-	11/4"	1"	and	44,2			41,7	40,4	39,1	37,8	36,3	32,7	28,1	22,4	15,7		
5HM08S T	7122	5HM08N T	7916	1,32	1,1	1,5	-	4,2	2,4	11/4"	1"	a m	60,4			58,4	56,9	55,5	53,8	52,1	47,7	42,1	34,9	25,9		
5HM08S M	7123	5HM08N M	7917	1,37	0,95	1,3	6,0	-	-	11/4"	1"	Altura	58,8			55	53,2	51,3	49,5	47,3	42,4	36,2	28,5	19,7		
5HM09S T	7124	5HM09N T	7918	1,48	1,5	2	-	5,0	2,9	11/4"	1"	A	68,1			66,1	64,7	63	61,3	59,2	54,4	48,2	40,1	30		
5HM09S M	7125	5HM09N M	7919	1,54	1,1	1,5	6,9	-	-	11/4"	1"		66,9			63,3	61,5	59,5	57,5	55,3	50	43,2	34,7	24,6		
10HM03S T	7130	10HM03N T	7920	1,3	1,1	1,5	-	4,2	2,4	1½"	1¼"		36,2								33,2	32,3	31,2	29,8	28,2	25,
10HM03S M	7131	10HM03N M	7921	1,39	1,1	1,5	6,3	-	-	1½"	1¼"		35,7								32	30,9	30,3	28,4	26,5	23,
10HM04S T	7132	10HM04N T	7922	1,7	1,5	2	-	5,4	3,1	1½"	1¼"		44,8								42,3	40,6	39,6	36,3	33,7	29,2
10HM04S M	7133	10HM04N M	7923	1,83	1,5	2	8,1	-	-	1½"	1¼"		47,6								43	41,6	40,8	37,9	35,8	31,9
10HM05S T	7134	10HM05N T	7924	2,14	2,2	3	-	7,2	4,1	1½"	1¼"	60,6 55,8 54,3 53,3 50,2 47,6									47,6	42,				
10HM05S M	7145	10HM05N M	7925	2,22	2,2	3	10,1	-	-	1½"	11/4"	4" 60 54,6 53 52,1 48,8 46									46	41,2				
10HM06S T	7146	10HM06N T	7926	2,52	2,2	3	-	8,0	4,6	1½"	1¼"	1/4" 72,4 66,3 64,4 63,2 59,3 56,2								56,2	50,					
10HM06S M	7147	10HM06N M	7927	2,55	2,2	3	11,5	-	-	1½"	1¼"		71,6								64,6	62,6	61,4	57,2	53,9	48,

Modelo Model	P	2	Ø	Qmax	Hmax	
Modèle	kW	cv	Asp	Imp	(m3/h)	(m)
MATINOX 1/5	0,37	0,5	11/2" - 2"	11/4" - 11/2"	22	12
MATINOX 1/7.5	0,55	0,75	11/2" - 2"	11/4" - 11/2"	22	18
MATINOX 1/10	0,75	1	11/2" - 2"	11/4" - 11/2"	25	22
MATINOX 1/15	1,1	1,5	11/2" - 2"	11/4" - 11/2"	27	22
MATINOX 1/20	1,5	2	1½" - 2"	11/4" - 11/2"	28	22
MATINOX 1/30	2,2	3	2"	11/2"	32	22
MATINOX 2/20	1,5	2	11/2" - 2" - 21/2"	11/2" - 2"	23	32
MATINOX 2/30	2,2	3	11/2" - 2" - 21/2"	11/2" - 2"	42	44
MATINOX 2/40	3	4	11/2" - 2" - 21/2"	11/2" - 2"	44	44
MATINOX 2/55	4	5,5	11/2" - 2" - 21/2"	11/2" - 2"	47	46
MATINOX 2/75	5,5	7,5	2" - 21/2"	11/2" - 2"	47	44
MATINOX 3/75	5,5	7,5	21/2" - 3" - 4"	2" - 21/2"	71	48
MATINOX 3/100	7,5	10	21/2" - 3" - 4"	2" - 21/2"	76	54
MATINOX 3/150	11	15	21/2" - 3" - 4"	2" - 21/2"	78	60
MATINOX 3/200	15	20	21/2" - 3" - 4"	2" - 21/2"	79	70
MATINOX 3/250	18,5	25	21/2" - 3" - 4"	2" - 21/2"	78	72
MATINOX 3/300	22	30	21/2" - 3" - 4"	2" - 21/2"	81	92

Modelo	0 - 1	Р	2		1 (A)		ç	ð							Altu	ra mar	nométr	ica / H	eight/	Hateu	r (m)				
Model Modèle	Cod.	kW	cv	1 ~ 230V	3 ~ 230V	3 ~ 400V	3 ~ 690V	Asp	Imp		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	Ş
HT-80	1010	0,6	0,8	-	2,6	1,5	-	11/4"	1"		3500	2900	2000	1500	700											
HM-80	1011	0,6	0,8	4,5	-	-	-	11/4"	1"		3500	2900	2000	1500	700											
HT-100	1012	0,75	1	-	3,2	1,8	-	11/4"	1"		4500	4000	3300	2400	1500	1000										
HM-100	1013	0,75	1	5,2	-	-	-	11/4"	1"	=	4500	4000	3300	2400	1500	1000										
HT-150	1014	1,1	1,5	-	4,8	3	-	11/4"	1"	Débit (I/h)		6000	5200	4800	3600	2400	900									
HM-150	1015	1,1	1,5	8	-	-	-	11/4"	1"	/ Dét		6000	5200	4800	3600	2400	900									
HT-200	1016	1,5	2	-	6,4	3,8	-	11/4"	1"	Flow		7500	6900	6400	6000	5200	4600	3600	2400	900						
HM-200	1009	1,5	2	11,5	-	-	-	11/4"	1"			7500	6900	6400	6000	5200	4600	3600	2400	900						
HT-305	1017	2,2	3	-	9	5,2	-	11/4"	1"	Caudal				9600	9000	8400	7200	6200	3800	1400						
HT-400	1018	3	4	-	14	8	-	1½"	11/4"							9600	8400	7500	6200	4800	2600					
HT-550	1019	4	5,5	-	17	10	-	1½"	11/4"						10800	10400	9800	9000	8400	7400	6000	4600	2800	1000		
HT-750	1412	5,5	7,5	-	-	14,7	8,5	1½"	11/4"									15000	13800	12500	10900	8900	6700	4000		
HT-1000	1413	7,5	10	-	-	17,2	9,5	2"	11/4"								30000	28000	26000	24000	20000	16000	12000	6000		
HT-1300	1414	9,2	12,5	-	-	18,9	10,4	2"	11/4"									30000	28000	26000	24000	20000	18000	13000	7500	8
HT-1500	1415	11	15	-	-	20,4	11,3	2"	11/4"						37000	36000	34000	33000	32000	31000	29000	27000	25000	20000	16000	10

Modelo	Cod	Р	2		I (A)		9	ð							Altura	manor	nétrica	/ Heigl	ht / Hate	e <i>ur</i> (m)	
Model Modèle	Cod.	kW	cv	1 ~ 230V	3 ~ 230V	3 ~ 400V	Asp	Imp		17	20	23	25	27	30	33	35	37	40	43	
HT-75	1822	0,55	0,75	-	2,6	1,5	1"	1"		5000	4800	3600	2400	900							Т
HM-75	1823	0,55	0,75	4,5	-	-	1"	1"		5000	4800	3600	2400	900							
HT-95	1824	0,75	1	-	3,2	1,8	1"	1"	t (Jh)			5000	4500	3800	2400	1200	900				
HM-95	1825	0,75	1	5,5	-	-	1"	1"	Débit			5000	4500	3800	2400	1200	900				
HT-145	1826	1,1	1,5	-	4,8	3,0	11/4"	1"	Flow/					6600	6000	5100	4200	3000	1200		
HM-145	1827	1,1	1,5	8,9	-	-	11/4"	1"	_					6600	6000	5100	4200	3000	1200		
HT-195	1828	1,5	2	-	6,4	3,8	11/4"	1"	Caudal						8100	7200	6600	6000	5100	4200	30
HM-195	1829	1,5	2	11,9	-	-	11/4"	1"							8100	7200	6600	6000	5100	4200	30
HT-295	1957	2	3	-	9,2	5,2	11/4"	1"								9000	8400	7900	7200	6000	48
HT-395	1958	3	4	-	12,1	7,0	2"	11/4"							19000	17000	16000	15000	13500	10800	90
HT-495	1959	4	5,5	-	17,0	10,0	2"	11/4"											18000	16500	15

Мо	delo / Mo	odel / Modèle		P	2		I (A)		9	ð					Altura m	anomét	rica / He	ight / Ha	ateur (m)		
3~230/400 V	Cod.	1~230 V	Cod.	kW	cv	1 ~ 230V	3 ~ 230V	3 ~ 400V	Asp	Imp		4	6	8	10	12	14	16	18	20	22
CO-350/03 T	7150	CO-350/03 M	7151	0,37	0,5	2,8	2,5	1,5	1½"	11/4"		14600	8000	4000							
CO-350/05 T	7152	CO-350/05 M	7153	0,55	0,75	4,3	2,7	1,6	1½"	11/4"	t (I/h)	21000	15000	9500	5000						
CO-350/07 T	7154	CO-350/07 M	7155	0,75	1	4,7	3,6	2,1	1½"	11/4"	Débit		20500	15000	9400	5000					
CO-350/09 T	7156	CO-350/09 M	7157	0,9	1,2	5,5	4,2	2,4	1½"	11/4"	Flow /		24000	19000	13200	8000	2500				
CO-350/11 T	7158	CO-350/11 M	7159	1,1	1,5	7,9	5,2	3	1½"	11/4"	dal / F		28500	24000	18000	12000	7000	3000			
CO-350/15 T	7160	CO-350/15 M	7161	1,5	2	9,2	6,3	3,6	1½"	11/4"	Caud		36000	28400	24000	18800	13400	7600	4500		
CO-500/15 T	7162	CO-500/15 M	7163	1,5	2	9,1	6,3	3,6		1½"			42000	33000	26500	18000	9000	1000			
CO-500/22 T	7164	CO-500/22 M	7165	2	3	12,7	9,1	5,2	2"	1½"				47000	40500	33000	26000	17600	9000	1500	
CO-500/30 T	7166			3	4	-	11,4	6,6	2"	1½"					52000	44500	38000	30000	23000	15000	8000

Modelo	Cod	Р	2		I (A)		9	ð						С	audal /	Flow / De	é <i>bit</i> (m³/l	h)			
Model Modèle	Cod.	kW	cv	3 ~ 230V	3 ~ 400V	3 ~ 690V	Asp	Imp	(m)	0	6	9	12	15	18	21	24	30	33	36	
MO32-160 B	1430	2,2	3	8,6	5,2	-	50	32	teur	29	28,5	27,3	25,7	23,8	21,4	18,5	14,8				
MO32-160 A	1431	3	4	11,7	7,1	-	50	32	/ Ha	36,8	36,4	35,4	34,2	32,8	31,1	28,8	26				
MO32-200 C	1432	4	5,5	15,5	9,4	-	50	32	Height	41	40	38,8	37,5	36	34,2	32,2	30				
MO32-200 B	1433	5,5	7,5	-	13	7	50	32	_	53	52	51	50	48,5	46,5	45	42,7	37	33,3	28,7	
MO32-200 A	1434	7,5	10	-	16	9,5	50	32	manom.	61	60,5	59,5	58,5	57,2	55,5	53,7	51,5	46,2	42,7	38,5	
MO32-250 C	1435	9,2	12,5	-	20,1	11,1	50	32	Alturan	70		68	67	65,5	63,5	61,5	58,7	50,5			
MO32-250 B	1436	11	15	-	24,2	13,3	50	32	Alt	82		80,5	79,5	78,5	77	75	72,6	66,5			
MO32-250 A	1437	15	20	-	30,1	16,6	50	32		93		92	91,5	90,5	89,5	88	85,7	80			

Modelo	Ond	Р	2		I (A)		9	ð						С	audal /	Flow / Do	é <i>bit</i> (m³/	h)			
Model Modèle	Cod.	kW	cv	3 ~ 230V	3 ~ 400V	3 ~ 690V	Asp	lmp	Œ	0	9	12	15	18	21	24	27	30	33	36	39
MO40-160 B	1438	3	4	14	8	-	65	40	ateur	30,4	30,1	30	29,6	29	28,2	27,1	25,9	24,4	22,8	21	
MO40-160 A	1439	4	5,5	17	10	-	65	40	t/Hg	36	35,6	35,5	35,3	35	34,2	33,2	32	30,6	29	27,3	25,4
MO40-200 B	1440	5,5	7,5	-	13	7	65	40	Heigh	47,5	47	46,8	46,4	45,6	44,5	43,2	41,6	39,9	37,9	35,8	33,4
MO40-200 A	1441	7,5	10	-	16	9,5	65	40	ıra / /	58,5	58,1	58	57,9	57,6	56,9	56	54,7	53	51,1	48,9	46,5
MO40-250 B	1442	11	15	-	25	13	65	40	Altr	75,5	74,6	74,2	73,5	72,7	71,7	70,4	69	67,2	65	62,5	59,5
MO40-250 A	1443	15	20	-	32	17	65	40		91,5	90,4	89,8	89,3	88,5	87,5	86,6	85,5	84	82,5	80,5	78,5

Modelo	Cod	Р	2		I (A)		Q	ð							Caud	al / Flow	/ Débit	(m³/h)				
Model Modèle	Cod.	kW	cv	3 ~ 230V	3 ~ 400V	3 ~ 690V	Asp	Imp		0	21	24	27	30	33	36	42	48	54	60	66	72
MO50-125 B	1444	3	4	12	8	-	65	50	ır(m)	20,2	20	19,8	19,3	19,1	18,7	18,3	17,4	16,4	15,3	14	12,7	11,2
MO50-125 A	1445	4	5,5	15,4	10	-	65	50	Hateu	25	24,8	24,6	24,4	24,2	23,8	23,5	22,7	21,8	20,8	19,6	18,1	16,5
MO50-160 B	1446	5,5	7,5	-	14	7	65	50	ight/	31	30,5	30,3	30,1	29,8	29,5	29	28	26,7	25,1	23,3	21,3	19,1
MO50-160 A	1447	7,5	10	-	16	9,5	65	50	/ Heig	37,5	37	36,9	36,8	36,6	36,4	36,1	35,1	34	32,6	31	29,1	26,9
MO50-200 C	1448	9,2	12,5	-	18	10	65	50	étrica	47		45,7	45,1	44,5	43,7	42,9	40,2	38,5	35,9	33	29	24,5
MO50-200 B	1449	11	15	-	22	13	65	50	omé	52		51	50,5	50	49,3	48,5	46,8	44,7	42,2	39,5	35,9	32
MO50-200 A	1450	15	20	-	28	17	65	50	mar	58,5		58,1	58	57,5	57	56,4	55	53,2	51,3	49	46,3	42,8
MO50-250 C	1451	15	20	-	32,5	17,9	65	50	Altura	71,5		70,8	70,3	69,7	69	68,3	67,6	66	64	61,5	58,6	55
MO50-250 B	1452	18,5	25	-	41,5	22,9	65	50		78,5		78	77,4	76,8	76,1	75,3	74,5	72,8	70,6	68,2	65,5	62,2
MO50-250 A	1453	22	30	-	51,5	28,4	65	50		90			89,5	88,8	88,3	87,7	86,1	84,5	82,7	80,5	78	75,2

									_													
Modelo Model	Cod.	Р	2		I (A)		9	ð							Caud	al / Flow	/ Débit	(m³/h)				
Modèle	Coa.	kW	cv	3 ~ 230V	3 ~ 400V	3 ~ 690V	Asp	Imp		0	30	36	42	48	54	60	66	72	84	108	120	132
MO65-125 B	1454	5,5	7,5	-	11	7	80	65	/r (m)	21,5	21	20,7	20,5	20,4	20,1	19,7	19,3	18,8	17,7	14,3	12,3	
MO65-125 A	1455	7,5	10	-	16	9,5	80	65	Hateı	25	24,8	24,6	24,4	24,3	24,1	23,9	23,7	23,4	22,3	19,4	17,5	15
MO65-160 C	1456	9,2	12,5	-	19,5	10	80	65		31,5			31,2	31,1	30,8	30,5	30,1	29,6	28,3	24,6	22,1	19,3
MO65-160 B	1457	11	15	-	23	13	80	65	/ Height	35			34,6	34,4	34,2	34	33,7	33,3	32,1	28,8	26,7	24,1
MO65-160 A	1458	15	20	-	27	17	80	65	trica	41			40,8	40,6	40,4	40,2	40	39,7	38,9	36,2	34,3	32,2
MO65-200 C	1459	15	20	-	31,4	17,5	80	65	nomé	45					44,8	44,5	44,1	43,7	42,3	38	35,3	32
MO65-200 B	1460	18,5	25	-	39	24	80	65	amar	50					49,5	49,3	49	48,5	47,3	43,5	41	38
MO65-200 A	1461	22	30	-	45	25	80	65	Altura	57					56,7	56,5	56,2	55,7	54,7	51,6	49,6	47,1
MO65-250 B	1462	30	40	-	63,5	35	80	65		80					79,5	78,5	77,3	76	73	65	60	54,5
MO65-250 A	1463	37	50	-	74,5	41	80	65		90					89,5	88,5	87,5	86,5	84	76,5	72	66,5

Anexo 6. Características de las bombas Hidráulica Alsina S.A

Fuente: [16]